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Introduction
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• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

• But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

• The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

• But this is not always possible (say, if a return value needs to be
generated) and also does not force subclasses of Shape to override
the method

• How can we a) define print properly in class Shape and b) force all
subclasses to implement this method?

OOP with Java Thomas Weise 3/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

• Since it is a subclass, you can store an instance of B in a variable of
type A

OOP with Java Thomas Weise 4/9



Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

• Since it is a subclass, you can store an instance of B in a variable of
type A

• You can, of course, call all the methods of such a variable, even the
abstract ones, because there cannot be any instance with an
abstract method
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Example for an abstract class

Listing: Example for an abstract class with an abstract method

/** the abstract class Shape */

public abstract class Shape {

/** the print method is not yet implemented */

public abstract void print ();

}
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Subclass overriding abstract method

Listing: Subclass overriding abstract method

/** the non -abstract class Rectangle extends the abstract class Shape */

public class Rectangle extends Shape {

/** the width */

private int width;

/** the height */

private int height;

/** create the rectangle */

public Rectangle(final int w, final int h) {

this.width = w; this.height = h;

}

/** print the rectangle */

public void print () {

for(int i = 0; i < this.height; i++) {

for(int j = 0; j < this.width; j++) {

System.out.print('#');

}

System.out.println ();

}

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

Shape rectangle = new Rectangle (10, 5); // We can store Rectangles in Shape variables

rectangle.print (); // and invoke the print method

}

}
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Another subclass overriding abstract method

Listing: Another subclass overriding abstract method

/** the non -abstract class Circle extends the abstract class Shape */

public class Circle extends Shape {

/** the radius */

private int radius;

/** create the circle */

public Circle(final int r) {

this.radius = r;

}

/** print the circle */

public void print () {

int range = 2 * this.radius;

for(int i = 0; i < range; i++) {

for(int j = 0; j < range; j++) {

System.out.print(

((int)(0.5d + Math.hypot(i-this.radius , j-this.radius))) < this.radius

? '#' : ' ');

}

System.out.println ();

}

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

Shape circle = new Circle (11); // We can store Circles in Shape variables

circle.print (); // and invoke the print method

}

}
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Summary

• We have learned about abstract classes

• abstract class cannot be instantiated, only subclassed (extended)

• abstract classes can have abstract methods, which are methods
without implementation

• Their non- abstract subclass then need to override and implement
these methods

• This is a way for us to define base classes which have methods that
cannot be implemented for these base classes and force any user
subclassing our class to implement them
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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