
OOP with Java
23. Abstract Classes

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Abstract Classes

3 Summary

OOP with Java Thomas Weise 2/9

w
e
b
s
it
e

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

• But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

• But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

• The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

• But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

• The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

• But this is not always possible (say, if a return value needs to be
generated) and also does not force subclasses of Shape to override
the method

OOP with Java Thomas Weise 3/9

Introduction

• Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

• Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

• There is no meaningful way to implement this method in class Shape

• But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

• The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

• But this is not always possible (say, if a return value needs to be
generated) and also does not force subclasses of Shape to override
the method

• How can we a) define print properly in class Shape and b) force all
subclasses to implement this method?

OOP with Java Thomas Weise 3/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

• Since it is a subclass, you can store an instance of B in a variable of
type A

OOP with Java Thomas Weise 4/9

Abstract Classes

• An abstract class A is a class which can have abstract methods

• An abstract method is a method which has no method body, i.e., is
only specified but not implemented

• An abstract class cannot be instantiated, since it has
unimplemented methods

• An abstract class can have a subclass B which is not abstract

• Such a subclass B must override and implement all inherited
abstract methods

• Since it is a subclass, you can store an instance of B in a variable of
type A

• You can, of course, call all the methods of such a variable, even the
abstract ones, because there cannot be any instance with an
abstract method

OOP with Java Thomas Weise 4/9

Example for an abstract class

Listing: Example for an abstract class with an abstract method

/** the abstract class Shape */

public abstract class Shape {

/** the print method is not yet implemented */

public abstract void print ();

}

OOP with Java Thomas Weise 5/9

Subclass overriding abstract method

Listing: Subclass overriding abstract method

/** the non -abstract class Rectangle extends the abstract class Shape */

public class Rectangle extends Shape {

/** the width */

private int width;

/** the height */

private int height;

/** create the rectangle */

public Rectangle(final int w, final int h) {

this.width = w; this.height = h;

}

/** print the rectangle */

public void print () {

for(int i = 0; i < this.height; i++) {

for(int j = 0; j < this.width; j++) {

System.out.print('#');

}

System.out.println ();

}

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

Shape rectangle = new Rectangle (10, 5); // We can store Rectangles in Shape variables

rectangle.print (); // and invoke the print method

}

}

OOP with Java Thomas Weise 6/9

Another subclass overriding abstract method

Listing: Another subclass overriding abstract method

/** the non -abstract class Circle extends the abstract class Shape */

public class Circle extends Shape {

/** the radius */

private int radius;

/** create the circle */

public Circle(final int r) {

this.radius = r;

}

/** print the circle */

public void print () {

int range = 2 * this.radius;

for(int i = 0; i < range; i++) {

for(int j = 0; j < range; j++) {

System.out.print(

((int)(0.5d + Math.hypot(i-this.radius , j-this.radius))) < this.radius

? '#' : ' ');

}

System.out.println ();

}

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

Shape circle = new Circle (11); // We can store Circles in Shape variables

circle.print (); // and invoke the print method

}

}

OOP with Java Thomas Weise 7/9

Summary

• We have learned about abstract classes

• abstract class cannot be instantiated, only subclassed (extended)

• abstract classes can have abstract methods, which are methods
without implementation

• Their non- abstract subclass then need to override and implement
these methods

• This is a way for us to define base classes which have methods that
cannot be implemented for these base classes and force any user
subclassing our class to implement them

OOP with Java Thomas Weise 8/9

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 9/9

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Abstract Classes
	Abstract Classes
	Example for an abstract class
	Subclass overriding abstract method
	Another subclass overriding abstract method

	Summary
	Summary

	Presentation End

