LR B

HEFEI UNIVERSITY

OOP with Java

23. Abstract Classes

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

B LR
http://iao.hfuu.edu.cn

& he
i HALA

AR R /2R
HEARA

& A AEACEE 7T
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Abstract Classes

® Summary

OOP with Java Thomas Weise

e Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

e Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

e Imagine a base class Shape for geometric shapes with a method

void print(); which should print an outline of the shape to stdout

e Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

e Imagine a base class Shape for geometric shapes with a method
void print(); which should print an outline of the shape to stdout

e There is no meaningful way to implement this method in class Shape

Introduction %()

e Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

e Imagine a base class Shape for geometric shapes with a method
void print(); which should print an outline of the shape to stdout
e There is no meaningful way to implement this method in class Shape

e But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

OOP with Java Thomas Weise 3/9

Introduction %\

e Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

e Imagine a base class Shape for geometric shapes with a method
void print(); which should print an outline of the shape to stdout
e There is no meaningful way to implement this method in class Shape

e But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

e The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

OOP with Java Thomas Weise 3/9

Introduction %\

Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

Imagine a base class Shape for geometric shapes with a method
void print(); which should print an outline of the shape to stdout
There is no meaningful way to implement this method in class Shape
But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

The default solution would be to define the method as
void print(){ } in Shape so that it does nothing

But this is not always possible (say, if a return value needs to be
generated) and also does not force subclasses of Shape to override
the method

OOP with Java Thomas Weise 3/9

Introduction %\

Sometimes, we create a base class with a method which can only
meaningfully be implemented in a subclass

Imagine a base class Shape for geometric shapes with a method
void print(); which should print an outline of the shape to stdout
There is no meaningful way to implement this method in class Shape
But if we have a class Rectangle extends Shape , this class can
implement it in meaningfully

The default solution would be to define the method as

void print(){ } in Shape so that it does nothing

But this is not always possible (say, if a return value needs to be
generated) and also does not force subclasses of Shape to override
the method

How can we a) define print properly in class Shape and b) force all
subclasses to implement this method?

OOP with Java Thomas Weise 3/9

e An abstract class A is a class which can have abstract methods

e An abstract class A is a class which can have abstract methods

e An abstract method is a method which has no method body, i.e., is
only specified but not implemented

e An abstract class A is a class which can have abstract methods

e An abstract method is a method which has no method body, i.e., is
only specified but not implemented

e An abstract class cannot be instantiated, since it has
unimplemented methods

An abstract class A is a class which can have abstract methods

An abstract method is a method which has no method body, i.e., is
only specified but not implemented

An abstract class cannot be instantiated, since it has
unimplemented methods

An abstract class can have a subclass B which is not abstract

An abstract class A is a class which can have abstract methods

An abstract method is a method which has no method body, i.e., is
only specified but not implemented

An abstract class cannot be instantiated, since it has
unimplemented methods

An abstract class can have a subclass B which is not abstract

Such a subclass B must override and implement all inherited
abstract methods

Abstract Classes %0,

e An abstract class A is a class which can have abstract methods

e An abstract method is a method which has no method body, i.e., is
only specified but not implemented

e An abstract class cannot be instantiated, since it has
unimplemented methods

e An abstract class can have a subclass B which is not abstract

e Such a subclass B must override and implement all inherited
abstract methods

e Since it is a subclass, you can store an instance of B in a variable of
type A

OOP with Java Thomas Weise 4/9

Abstract Classes

”

>
<

e An abstract class A is a class which can have abstract methods

e An abstract method is a method which has no method body, i.e., is
only specified but not implemented

e An abstract class cannot be instantiated, since it has
unimplemented methods

e An abstract class can have a subclass B which is not abstract

e Such a subclass B must override and implement all inherited
abstract methods

e Since it is a subclass, you can store an instance of B in a variable of
type A

e You can, of course, call all the methods of such a variable, even the

abstract ones, because there cannot be any instance with an
abstract method

OOP with Java Thomas Weise 4/9

Example for an abstract class

Listing: Example for an

/** the abstract

class with an

class Shape */

public abstract class Shape {

/%% the print method ts mnot yet

public abstract void print();

}

implemented */

method

OOP with Java

Thomas Weise

5/9

Subclass overriding abstract method

Listing: Subclass overriding method

public class Rectangle extends Shape {
private int width;

private int height;

public Rectangle(final int w, final int h) {
this.width = w; this.height = h;
I

public void print() {
for(int i = 0; i < this.height; i++) {
for(int j = 0; j < this.width; j++) {
System.out.print ('#');

System.out.println();
+
s

public static void main(String[] args) {
Shape rectangle = new Rectangle(10, 5);
rectangle.print ();
¥
}

OOP with Java Thomas Weise

6/9

Another subclass overriding abstract method

Listi other subclass overridin method

public class Circle extends Shape {

private int radius;

public Circle(final int r) {
this.radius = r;

}

public void print() {
int range = 2 * this.radius;
for(int i = 0; i < range; i++) {
for(int j = 0; j < range; j++) {
System.out.print (
((int) (0.5d + Math.hypot(i-this.radius, j-this.radius))) < this.radius
R TS
}
System.out.println();
I
¥

public static void main(String[] args) {
Shape circle = new Circle(11);
circle.print () ;
}
}

OOP with Java Thomas Weise

7/9

Summary %ﬁ)

e We have learned about abstract classes
e abstract class cannot be instantiated, only subclassed (extended)

e abstract classes can have abstract methods, which are methods
without implementation

e Their non- abstract subclass then need to override and implement
these methods

e This is a way for us to define base classes which have methods that
cannot be implemented for these base classes and force any user
subclassing our class to implement them

OOP with Java Thomas Weise 8/9

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried Wanderer iber dem Neb
hitp:/fen.wikip /anderer_above_the

9/9

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Abstract Classes
	Abstract Classes
	Example for an abstract class
	Subclass overriding abstract method
	Another subclass overriding abstract method

	Summary
	Summary

	Presentation End

