
OOP with Java
22. Collections, equals , and hashCode

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Lists

3 Equality vs. Identity

4 Maps

5 Equality and hashCode()

6 Sets

7 Summary

OOP with Java Thomas Weise 2/23

w
e
b
s
it
e

Introduction

• Java provides a lot of utility classes

OOP with Java Thomas Weise 3/23

Introduction

• Java provides a lot of utility classes

• The most important ones are probably the collection classes

OOP with Java Thomas Weise 3/23

Introduction

• Java provides a lot of utility classes

• The most important ones are probably the collection classes

• Collections are objects which can store other objects

OOP with Java Thomas Weise 3/23

Introduction

• Java provides a lot of utility classes

• The most important ones are probably the collection classes

• Collections are objects which can store other objects

• The most important collection types are lists, maps, and sets

OOP with Java Thomas Weise 3/23

Introduction

• Java provides a lot of utility classes

• The most important ones are probably the collection classes

• Collections are objects which can store other objects

• The most important collection types are lists, maps, and sets

• You can find their default implementations in package java.util

OOP with Java Thomas Weise 3/23

Lists

• Arrays in Java have a fixed length

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

• insert an object o at index i via add(i, o)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

• insert an object o at index i via add(i, o)

• deletes then object at index i via remove(i)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

• insert an object o at index i via add(i, o)

• deletes then object at index i via remove(i)

• add/remove all objects in another collection c via

addAll(c) / removeAll(c)

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

• insert an object o at index i via add(i, o)

• deletes then object at index i via remove(i)

• add/remove all objects in another collection c via

addAll(c) / removeAll(c)

• iterate over a list l in the same read-only fashion as used for arrays

via for(Object e : l){ ... }

OOP with Java Thomas Weise 4/23

Lists

• Arrays in Java have a fixed length

• Lists are a dynamic-length version of arrays

• They offer a lot of advanced functionality: you can
• get the object at list index i via get(i)

• get store an object o at list index i via set(i, o)

• add an object o via add(o)

• insert an object o at index i via add(i, o)

• deletes then object at index i via remove(i)

• add/remove all objects in another collection c via

addAll(c) / removeAll(c)

• iterate over a list l in the same read-only fashion as used for arrays

via for(Object e : l){ ... }

• . . .

OOP with Java Thomas Weise 4/23

List Implementations

• Java provides several different implementations of this functionality

OOP with Java Thomas Weise 5/23

List Implementations

• Java provides several different implementations of this functionality

• java.util.ArrayList is the implementation we always use

OOP with Java Thomas Weise 5/23

List Implementations

• Java provides several different implementations of this functionality

• java.util.ArrayList is the implementation we always use

• java.util.Vector is basically the same, just slower (due to

synchronization, which is useless anyway)

OOP with Java Thomas Weise 5/23

List Implementations

• Java provides several different implementations of this functionality

• java.util.ArrayList is the implementation we always use

• java.util.Vector is basically the same, just slower (due to

synchronization, which is useless anyway)

• java.util.LinkedList is another slower implementation of the same
functionality (yes, someone will say linked lists are efficient for some special

cases, blablabla, but even if you have millions of elements, LinkedList will just

consome more memory and be slower than ArrayList)

OOP with Java Thomas Weise 5/23

Example for using ArrayList

Listing: Example for using ArrayList

import java.util.ArrayList;

/** a test for array list , which allows us to store and manipulate a sequence of objects */

public class ArrayListTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

ArrayList <String > list = new ArrayList <>();

list.add("Hello"); //$NON -NLS -1$

list.add("World."); //$NON -NLS -1$

list.add("It's"); //$NON -NLS -1$

list.add("me."); //$NON -NLS -1$

System.out.println(list); // [Hello , World., It's, me.]

int index = list.indexOf("World."); //$NON -NLS -1$

System.out.println(index); // 1

list.remove(index);

System.out.println(list); // [Hello , It's, me.]

list.add(index , "World !!!"); //$NON -NLS -1$

System.out.println(list); // [Hello , World !!!, It's, me]

for(String string : list) { // fast read -only iteration

System.out.print(string); // HelloWorld !!!It'sme.

}

System.out.println ();

ArrayList <String > list2 = new ArrayList <>();

list2.addAll(list);

list2.remove (1);

System.out.println(list2); // [Hello , It's, me.]

list.removeAll(list2);

System.out.println(list); // [World !!!]

list.addAll(list2);

list.addAll(list);

System.out.println(list); // [World !!!, Hello , It's, me., World !!!, Hello , It's, me.]

}

}

OOP with Java Thomas Weise 6/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

• Class Object provides a method public boolean equals(Object)

intended for this purpose

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

• Class Object provides a method public boolean equals(Object)

intended for this purpose
• Any subclass can override it to perform a class-specific comparison for
equality

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

• Class Object provides a method public boolean equals(Object)

intended for this purpose
• Any subclass can override it to perform a class-specific comparison for
equality

• By default, it just does the same as == if you do not override it

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

• Class Object provides a method public boolean equals(Object)

intended for this purpose
• Any subclass can override it to perform a class-specific comparison for
equality

• By default, it just does the same as == if you do not override it
• Java collections use equals instead of == to compare objects when
you search inside them

OOP with Java Thomas Weise 7/23

Object Equality and Identity

• As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

• Often, you want to compare based on object content, not just by
reference, i.e., based on equality

• If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

• Class Object provides a method public boolean equals(Object)

intended for this purpose
• Any subclass can override it to perform a class-specific comparison for
equality

• By default, it just does the same as == if you do not override it
• Java collections use equals instead of == to compare objects when
you search inside them

• equals must be implemented in a way so that

a.equals(b)== b.equals(a) !
OOP with Java Thomas Weise 7/23

integer holder class without equals override

Listing: integer holder class without equals override

/** a holder class for an integer */

public final class IntHolder {

/** the integer value */

private final int value;

/** create the integer value holder */

public IntHolder(final int _value) {

this.value = _value;

}

/** get the string representation of this value */

@Override

public String toString () {

return "" + this.value; //$NON -NLS -1$

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

IntHolder a = new IntHolder (1);

IntHolder b = new IntHolder (2);

IntHolder c = new IntHolder (1);

System.out.print(a == a); System.out.print(' '); System.out.println(a.equals(a)); // true true

System.out.print(a == b); System.out.print(' '); System.out.println(a.equals(b)); // false false

System.out.print(a == c); System.out.print(' '); System.out.println(a.equals(c)); // false false

System.out.print(b == a); System.out.print(' '); System.out.println(b.equals(a)); // false false

System.out.print(b == b); System.out.print(' '); System.out.println(b.equals(b)); // true true

System.out.print(b == c); System.out.print(' '); System.out.println(b.equals(c)); // false false

System.out.print(c == a); System.out.print(' '); System.out.println(c.equals(a)); // false false

System.out.print(c == b); System.out.print(' '); System.out.println(c.equals(b)); // false false

System.out.print(c == c); System.out.print(' '); System.out.println(c.equals(c)); // true true

}

}

OOP with Java Thomas Weise 8/23

integer holder class with equals override

Listing: integer holder class with equals override

/** a holder class for an integer */

public final class IntHolderWithEquals {

/** the integer value */

private final int value;

/** create the integer value holder */

public IntHolderWithEquals(final int _value) {

this.value = _value;

}

/** get the string representation of this value */

@Override

public String toString () {

return "" + this.value; //$NON -NLS -1$

}

/** override the equals method from Object checking for equality */

@Override

public boolean equals(final Object o) {

return ((o instanceof IntHolderWithEquals) && // check if right class

(((IntHolderWithEquals)o).value == this.value));

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

IntHolderWithEquals a = new IntHolderWithEquals (1);

IntHolderWithEquals b = new IntHolderWithEquals (2);

IntHolderWithEquals c = new IntHolderWithEquals (1);

System.out.print(a == a); System.out.print(' '); System.out.println(a.equals(a)); // true true

System.out.print(a == b); System.out.print(' '); System.out.println(a.equals(b)); // false false

System.out.print(a == c); System.out.print(' '); System.out.println(a.equals(c)); // false true

System.out.print(b == a); System.out.print(' '); System.out.println(b.equals(a)); // false false

System.out.print(b == b); System.out.print(' '); System.out.println(b.equals(b)); // true true

System.out.print(b == c); System.out.print(' '); System.out.println(b.equals(c)); // false false

System.out.print(c == a); System.out.print(' '); System.out.println(c.equals(a)); // false true

System.out.print(c == b); System.out.print(' '); System.out.println(c.equals(b)); // false false

System.out.print(c == c); System.out.print(' '); System.out.println(c.equals(c)); // true true

}

}

OOP with Java Thomas Weise 9/23

integer holder without equals override in list

Listing: integer holder without equals override in list

import java.util.ArrayList;

/** a test for search methods in array list */

public class ArrayListWithoutEqualsTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

ArrayList <IntHolder > list = new ArrayList <>();

list.add(new IntHolder (3));

IntHolder ih4 = new IntHolder (4);

list.add(ih4);

list.add(new IntHolder (-1));

list.add(new IntHolder (3));

System.out.println(list); // [3, 4, -1, 3]

System.out.println(list.contains(new IntHolder (3))); // false

System.out.println(list.contains(new IntHolder (4))); // false

System.out.println(list.contains(ih4)); // true

System.out.println(list.contains(new IntHolder (5))); // false

System.out.println(list.indexOf(new IntHolder (3))); // -1 (not found)

System.out.println(list.indexOf(new IntHolder (4))); // -1 (not found)

System.out.println(list.indexOf(ih4)); // 1 (found)

System.out.println(list.indexOf(new IntHolder (5))); // -1 (not found)

System.out.println(list.lastIndexOf(new IntHolder (3))); // -1 (not found)

System.out.println(list.lastIndexOf(new IntHolder (4))); // -1 (not found)

System.out.println(list.lastIndexOf(ih4)); // 1 (found)

System.out.println(list.lastIndexOf(new IntHolder (5))); // -1 (not found)

}

}

OOP with Java Thomas Weise 10/23

integer holder with equals override in list

Listing: integer holder with equals override in list

import java.util.ArrayList;

/** a test for search methods in array list */

public class ArrayListWithEqualsTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

ArrayList <IntHolderWithEquals > list = new ArrayList <>();

list.add(new IntHolderWithEquals (3));

IntHolderWithEquals ih4 = new IntHolderWithEquals (4);

list.add(ih4);

list.add(new IntHolderWithEquals (-1));

list.add(new IntHolderWithEquals (3));

System.out.println(list); // [3, 4, -1, 3]

System.out.println(list.contains(new IntHolderWithEquals (3))); // true

System.out.println(list.contains(new IntHolderWithEquals (4))); // true

System.out.println(list.contains(ih4)); // true

System.out.println(list.contains(new IntHolderWithEquals (5))); // false

System.out.println(list.indexOf(new IntHolderWithEquals (3))); // 0

System.out.println(list.indexOf(new IntHolderWithEquals (4))); // 1

System.out.println(list.indexOf(ih4)); // 1 (found)

System.out.println(list.indexOf(new IntHolderWithEquals (5))); // -1 (not found)

System.out.println(list.lastIndexOf(new IntHolderWithEquals (3))); // 3

System.out.println(list.lastIndexOf(new IntHolderWithEquals (4))); // 1

System.out.println(list.lastIndexOf(ih4)); // 1 (found)

System.out.println(list.lastIndexOf(new IntHolderWithEquals (5))); // -1 (not found)

}

}

OOP with Java Thomas Weise 11/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

OOP with Java Thomas Weise 12/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

• Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

OOP with Java Thomas Weise 12/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

• Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

• There are quite a few implementations of that functionality

OOP with Java Thomas Weise 12/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

• Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

• There are quite a few implementations of that functionality:
• java.util.HashMap : This is the implementation we will always use

OOP with Java Thomas Weise 12/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

• Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

• There are quite a few implementations of that functionality:
• java.util.HashMap : This is the implementation we will always use

• java.util.HashTable : A slower implementation of the same

functionality (due to useless synchronization)

OOP with Java Thomas Weise 12/23

Maps

• In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

• Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

• There are quite a few implementations of that functionality:
• java.util.HashMap : This is the implementation we will always use

• java.util.HashTable : A slower implementation of the same

functionality (due to useless synchronization)
• java.util.Dictionary : An obselete implementation of similar

functionality (never use this one)

OOP with Java Thomas Weise 12/23

Example for using HashMap

Listing: Example for using HashMap

import java.util.HashMap;

/** a test for Hash Map , which relates key objects to value objects , each key must be unique */

public class HashMapTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

HashMap <String ,String > map = new HashMap <>();

map.put("Hello", "World!"); //$NON -NLS -1$ //$NON -NLS -2$

map.put("It's", "me!"); //$NON -NLS -1$ //$NON -NLS -2$

map.put("Professor", "Weise"); //$NON -NLS -1$ //$NON -NLS -2$

map.put("Weise", "Thomas"); //$NON -NLS -1$ //$NON -NLS -2$

map.put("Teacher", "Weise"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // {Professor=Weise , Hello=World!, Weise=Thomas , It's=me!, Teacher=Weise}

map.put("It's", "you , not me!"); //$NON -NLS -1$ //$NON -NLS -2$

map.put("Professor", "Jacky Chan"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // {Professor=Jacky Chan , Hello=World!, Weise=Thomas , It's=you , not me!, Teacher=Weise}

System.out.println(map.remove("Professor")); // Jacky Chan //$NON -NLS -1$

System.out.println(map); // {Hello=World!, Weise=Thomas , It's=you , not me!, Teacher=Weise}

System.out.println(map.entrySet ()); // [Hello=World!, Weise=Thomas , It's=you , not me!, Teacher=Weise]

System.out.println(map.keySet ()); // [Hello , Weise , It's, Teacher]

System.out.println(map.values ()); // [World!, Thomas , you , not me!, Weise]

HashMap <String ,String > other = new HashMap <>();

other.put("Hello", "China"); //$NON -NLS -1$ //$NON -NLS -2$

other.put("Country", "China"); //$NON -NLS -1$ //$NON -NLS -2$

other.put("Weise", "Teacher"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(other); // {Hello=China , Weise=Teacher , Country=China}

map.putAll(other);

System.out.println(map); // {Hello=China , Weise=Teacher , It's=you , not me!, Teacher=Weise , Country=China}

for(String key : map.keySet ()) {

System.out.println(map.get(key)); // China \n Teacher \n you , not me! \n Weise \n China

}

}

}

OOP with Java Thomas Weise 13/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

• Then wraps this int into the range 0 . . . table.length-1

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

• Then wraps this int into the range 0 . . . table.length-1

• This is where a linked list of entries with the keys mapping to the same
index is located

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

• Then wraps this int into the range 0 . . . table.length-1

• This is where a linked list of entries with the keys mapping to the same
index is located

• Ideally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

• Then wraps this int into the range 0 . . . table.length-1

• This is where a linked list of entries with the keys mapping to the same
index is located

• Ideally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not

• Otherwise, we can find it somewhere in the list (comparing keys via
equals)

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map
• This is dangerous
• How does a map work?

• A HashMap in Java tries to provide very fast access

• Therefore, it internally uses an array table of entries

• When looking up a key, it first converts it into an int

• Then wraps this int into the range 0 . . . table.length-1

• This is where a linked list of entries with the keys mapping to the same
index is located

• Ideally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not

• Otherwise, we can find it somewhere in the list (comparing keys via
equals)

• If there are too many elements in the map compared to
table.length , the table is resized

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

• This is done via the public int hashCode() method of class Object

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

• This is done via the public int hashCode() method of class Object

• Which does, by default, return something like the memory address of
the object

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

• This is done via the public int hashCode() method of class Object

• Which does, by default, return something like the memory address of
the object

• So what does this mean?

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

• This is done via the public int hashCode() method of class Object

• Which does, by default, return something like the memory address of
the object

• So what does this mean?

• If we do not override public int hashCode() to use our object’s data

instead of the memory address, HashMap will (almost always) be
unable to find our keys. . .

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

• Sometimes, you may want to use your class as key type for a map

• This is dangerous

• How does a map work?

• What does this mean?
• Essentially, we need to provide a way for the map to translate our key

objects to int s

• This is done via the public int hashCode() method of class Object

• Which does, by default, return something like the memory address of
the object

• So what does this mean?

• If we do not override public int hashCode() to use our object’s data

instead of the memory address, HashMap will (almost always) be
unable to find our keys. . .

• Of course we also need to override equals !

OOP with Java Thomas Weise 14/23

integer holder class without hashCode override

Listing: integer holder class without hashCode override

/** a holder class for an integer */

public final class IntHolderWithEqualsWithoutHashCode {

/** the integer value */

private final int value;

/** create the integer value holder */

public IntHolderWithEqualsWithoutHashCode(final int _value) {

this.value = _value;

}

/** get the string representation of this value */

@Override

public String toString () {

return "" + this.value; //$NON -NLS -1$

}

/** override the equals method from Object checking for equality */

@Override

public boolean equals(final Object o) {

return ((o instanceof IntHolderWithEqualsWithoutHashCode) && // check if right class

(((IntHolderWithEqualsWithoutHashCode)o).value == this.value));

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

IntHolderWithEqualsWithoutHashCode a = new IntHolderWithEqualsWithoutHashCode (1);

IntHolderWithEqualsWithoutHashCode b = new IntHolderWithEqualsWithoutHashCode (2);

IntHolderWithEqualsWithoutHashCode c = new IntHolderWithEqualsWithoutHashCode (1);

System.out.println(a.hashCode ()); // this will print

System.out.println(b.hashCode ()); // three entirely different

System.out.println(c.hashCode ()); // numbers

System.out.print(a == a); System.out.print(' '); System.out.println(a.equals(a)); // true true

System.out.print(a == b); System.out.print(' '); System.out.println(a.equals(b)); // false false

System.out.print(a == c); System.out.print(' '); System.out.println(a.equals(c)); // false true

System.out.print(b == a); System.out.print(' '); System.out.println(b.equals(a)); // false false

System.out.print(b == b); System.out.print(' '); System.out.println(b.equals(b)); // true true

System.out.print(b == c); System.out.print(' '); System.out.println(b.equals(c)); // false false

System.out.print(c == a); System.out.print(' '); System.out.println(c.equals(a)); // false true

System.out.print(c == b); System.out.print(' '); System.out.println(c.equals(b)); // false false

System.out.print(c == c); System.out.print(' '); System.out.println(c.equals(c)); // true true

}

} OOP with Java Thomas Weise 15/23

integer holder without hashCode override in hash map

Listing: integer holder without hashCode override in hash map

import java.util.HashMap;

/** a test for Hash Map */

public class HashMapWithoutHashCodeTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

HashMap <IntHolderWithEqualsWithoutHashCode , String > map = new HashMap <>();

map.put(new IntHolderWithEqualsWithoutHashCode (1), "A"); //$NON -NLS -1$

System.out.println(map); // {1=A}

map.put(new IntHolderWithEqualsWithoutHashCode (2), "B"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B}

map.put(new IntHolderWithEqualsWithoutHashCode (3), "C"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B, 3=C}

map.put(new IntHolderWithEqualsWithoutHashCode (1), "D"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B, 1=D, 3=C}

map.put(new IntHolderWithEqualsWithoutHashCode (3), "E"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B, 1=D, 3=C, 3=E}

System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode (1))); // null <- key lost

System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode (2))); // null <- key lost

System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode (3))); // null <- key lost

System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode (4))); // null <- key does not

exist

}

}

OOP with Java Thomas Weise 16/23

integer holder class with hashCode override

Listing: integer holder class with hashCode override

/** a holder class for an integer */

public final class IntHolderWithEqualsAndHashCode {

/** the integer value */

private final int value;

/** create the integer value holder */

public IntHolderWithEqualsAndHashCode(final int _value) {

this.value = _value;

}

/** get the string representation of this value */

@Override

public String toString () {

return "" + this.value; //$NON -NLS -1$

}

/** override the equals method from Object checking for equality */

@Override

public boolean equals(final Object o) {

return ((o instanceof IntHolderWithEqualsAndHashCode) && // check if right class

(((IntHolderWithEqualsAndHashCode)o).value == this.value));

}

/** override the hashCode method from Object to return an integer number representing this instance (luckily , our only instance variable is an int)*/

@Override

public int hashCode () { // normally , your class will have more complex member variables , say objects , strings , doubles , etc.

return this.value; // you would then return some combination of their hashCodes ()

} // the hash code of a list , for instance , is something like a special sum of its element 's hash codes

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

IntHolderWithEqualsAndHashCode a = new IntHolderWithEqualsAndHashCode (1);

IntHolderWithEqualsAndHashCode b = new IntHolderWithEqualsAndHashCode (2);

IntHolderWithEqualsAndHashCode c = new IntHolderWithEqualsAndHashCode (1);

System.out.println(a.hashCode ()); // 1 <-- this has changed , we now get the same

System.out.println(b.hashCode ()); // 2 <-- hash codes for the same data

System.out.println(c.hashCode ()); // 1 <-- see?

System.out.print(a == a); System.out.print(' '); System.out.println(a.equals(a)); // true true

System.out.print(a == b); System.out.print(' '); System.out.println(a.equals(b)); // false false

System.out.print(a == c); System.out.print(' '); System.out.println(a.equals(c)); // false true

System.out.print(b == a); System.out.print(' '); System.out.println(b.equals(a)); // false false

System.out.print(b == b); System.out.print(' '); System.out.println(b.equals(b)); // true true

System.out.print(b == c); System.out.print(' '); System.out.println(b.equals(c)); // false false

System.out.print(c == a); System.out.print(' '); System.out.println(c.equals(a)); // false true

System.out.print(c == b); System.out.print(' '); System.out.println(c.equals(b)); // false false

System.out.print(c == c); System.out.print(' '); System.out.println(c.equals(c)); // true true

}

}

OOP with Java Thomas Weise 17/23

integer holder with hashCode override in hash map

Listing: integer holder with hashCode override in hash map

import java.util.HashMap;

/** a test for Hash Map */

public class HashMapWithHashCodeTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

HashMap <IntHolderWithEqualsAndHashCode , String > map = new HashMap <>();

map.put(new IntHolderWithEqualsAndHashCode (1), "A"); //$NON -NLS -1$

System.out.println(map); // {1=A}

map.put(new IntHolderWithEqualsAndHashCode (2), "B"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B}

map.put(new IntHolderWithEqualsAndHashCode (3), "C"); //$NON -NLS -1$

System.out.println(map); // {1=A, 2=B, 3=C}

map.put(new IntHolderWithEqualsAndHashCode (1), "D"); //$NON -NLS -1$

System.out.println(map); // {1=D, 2=B, 3=C}

map.put(new IntHolderWithEqualsAndHashCode (3), "E"); //$NON -NLS -1$

System.out.println(map); // {1=D, 2=B, 3=E}

System.out.println(map.get(new IntHolderWithEqualsAndHashCode (1))); // D

System.out.println(map.get(new IntHolderWithEqualsAndHashCode (2))); // B

System.out.println(map.get(new IntHolderWithEqualsAndHashCode (3))); // E

System.out.println(map.get(new IntHolderWithEqualsAndHashCode (4))); // null <- key does not exist

}

}

OOP with Java Thomas Weise 18/23

Relationship of equals and hashCode

• There is a very simple and important relationship between equals

and hashCode

OOP with Java Thomas Weise 19/23

Relationship of equals and hashCode

• There is a very simple and important relationship between equals

and hashCode :

if a.equals(b) then it must hold that a.hashCode()== b.hashCode()

OOP with Java Thomas Weise 19/23

Relationship of equals and hashCode

• There is a very simple and important relationship between equals

and hashCode :

if a.equals(b) then it must hold that a.hashCode()== b.hashCode()

• This means that, whenever we override equals , we also need to

override hashCode and vice versa

OOP with Java Thomas Weise 19/23

Relationship of equals and hashCode

• There is a very simple and important relationship between equals

and hashCode :

if a.equals(b) then it must hold that a.hashCode()== b.hashCode()

• This means that, whenever we override equals , we also need to

override hashCode and vice versa

• But remember, this is a one-way relationship

OOP with Java Thomas Weise 19/23

Relationship of equals and hashCode

• There is a very simple and important relationship between equals

and hashCode :

if a.equals(b) then it must hold that a.hashCode()== b.hashCode()

• This means that, whenever we override equals , we also need to

override hashCode and vice versa

• But remember, this is a one-way relationship

• If two objects have the same hash code, they do not necessarily need
to be equal, i.e., from a.hashCode()== b.hashCode() it does not follow

that a.equals(b)

OOP with Java Thomas Weise 19/23

Sets

• A Set is a data structure which can either contain or not contain an
element

OOP with Java Thomas Weise 20/23

Sets

• A Set is a data structure which can either contain or not contain an
element

• Different from lists, each element can occur at most once

OOP with Java Thomas Weise 20/23

Sets

• A Set is a data structure which can either contain or not contain an
element

• Different from lists, each element can occur at most once

• You can imagine it as a map with object keys and Boolean values

OOP with Java Thomas Weise 20/23

Sets

• A Set is a data structure which can either contain or not contain an
element

• Different from lists, each element can occur at most once

• You can imagine it as a map with object keys and Boolean values
(actually, it is not that far from this in reality)

• Your keys for the set must implement both equals and hashCode

OOP with Java Thomas Weise 20/23

Sets

• A Set is a data structure which can either contain or not contain an
element

• Different from lists, each element can occur at most once

• You can imagine it as a map with object keys and Boolean values
(actually, it is not that far from this in reality)

• Your keys for the set must implement both equals and hashCode

• We will always use the Java utility class java.util.HashSet for
representing sets

OOP with Java Thomas Weise 20/23

Example for using HashSet

Listing: Example for using HashSet

import java.util.HashSet;

/** a test for sets , a set can contain each element exactly once */

public class HashSetTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

HashSet <String > set = new HashSet <>();

System.out.println(set.add("Hello")); // true //$NON -NLS -1$

System.out.println(set); // [Hello]

System.out.println(set.add("World!")); // true //$NON -NLS -1$

System.out.println(set); // [Hello , World !]

System.out.println(set.add("World!")); // false //$NON -NLS -1$

System.out.println(set); // [Hello , World !]

System.out.println(set.add("It's")); // true //$NON -NLS -1$

System.out.println(set); // [Hello , World!, It's]

System.out.println(set.add("me!")); // true //$NON -NLS -1$

System.out.println(set); // [Hello , World!, It's, me!]

System.out.println(set.contains("It's"));// true //$NON -NLS -1$

System.out.println(set.remove("It's")); // true //$NON -NLS -1$

System.out.println(set); // [Hello , World!, me!

System.out.println(set.contains("It's"));// false //$NON -NLS -1$]

System.out.println(set.remove("It's")); // false //$NON -NLS -1$

System.out.println(set); // [Hello , World!, me!]

}

}

OOP with Java Thomas Weise 21/23

Summary

• We have learned about the basic collections offerent by Java

• These include Lists, Maps, and Sets

• Using them properly with our own classes requires us to override the
methods public boolean equals(Object) and public int hashCode()

inherited from class Object

• We must ensure that a.equals(b) =⇒ a.hashCode()== b.hashCode()

• We noticed that all of Java’s collections make heavy use of generics
we discussed in Lesson 21: Generics

OOP with Java Thomas Weise 22/23

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 23/23

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Lists
	Lists
	List Implementations
	Example for using ArrayList

	Equality vs. Identity
	Object Equality and Identity
	integer holder class without equals override
	integer holder class with equals override
	integer holder without equals override in list
	integer holder with equals override in list

	Maps
	Maps
	Example for using HashMap

	Equality and hashCode()
	Maps with our own Key Classes
	integer holder class without hashCode override
	integer holder without hashCode override in hash map
	integer holder class with hashCode override
	integer holder with hashCode override in hash map
	Relationship of equals and hashCode

	Sets
	Sets
	Example for using HashSet

	Summary
	Summary

	Presentation End

