LR B

HEFEI UNIVERSITY

OOP with Java
22. Collections, - BN 12shCode |

Thomas Weise - 7 &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &/E% %
Faculty of Computer Science and Technology | 7+A#uf

B /2K
25 H KA

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | T E Z#&4 &l & JJE 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 %iﬁiﬁ%iﬁ %5 RiE90F

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Lists

® Equality vs. Identity

9 Maps

@ Equality and hashCode ()

@ Sets

@ Summary

OOP with Java Thomas Weise

e Java provides a lot of utility classes

e Java provides a lot of utility classes

e The most important ones are probably the collection classes

e Java provides a lot of utility classes

e The most important ones are probably the collection classes

e Collections are objects which can store other objects

Java provides a lot of utility classes

The most important ones are probably the collection classes

Collections are objects which can store other objects

The most important collection types are lists, maps, and sets

Java provides a lot of utility classes

The most important ones are probably the collection classes

Collections are objects which can store other objects

The most important collection types are lists, maps, and sets

You can find their default implementations in package java.util

e Arrays in Java have a fixed length

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality: you can
o get the object at list index i via get(i)

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality: you can
o get the object at list index i via get(i)

e get store an object o at list index i via set(i, o)

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality: you can
o get the object at list index i via get(i)

e get store an object o at list index i via set(i, o)

e add an object o via add(o)

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays

e They offer a lot of advanced functionality: you can
o get the object at list index i via get(i)
e get store an object o at list index i via set(i, o)
e add an object o via add(o)

e insert an object o atindex i via add(i, o)

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality: you can
get the object at list index i via get(i)

e get store an object o at list index i via set(i, o)

add an object o via add(o)
e insert an object o atindex i via add(i, o)

deletes then object at index i via remove(i)

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays
e They offer a lot of advanced functionality: you can
o get the object at list index i via get(i)
e get store an object o at list index i via set(i, o)
e add an object o via add(o)
e insert an object o atindex i via add(i, o)

o deletes then object at index i via remove(i)
e add/remove all objects in another collection ¢ via

addAll(c) / removeAll(c)

Lists

”

>
<

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays

e They offer a lot of advanced functionality: you can

get the object at list index i via get(i)

get store an object o at list index i via set(i, o)
add an object o via add(o)

insert an object o atindex i via add(i, o)

deletes then object at index i via remove(i)

add/remove all objects in another collection ¢ via

addAll(c) /removeAll(c)

iterate over a list 1 in the same read-only fashion as used for arrays
via for(Object e : 1){ ... }

OOP with Java Thomas Weise 4/23

Lists

”

>
<

e Arrays in Java have a fixed length

e Lists are a dynamic-length version of arrays

e They offer a lot of advanced functionality: you can

get the object at list index i via get(i)

get store an object o at list index i via set(i, o)
add an object o via add(o)

insert an object o atindex i via add(i, o)

deletes then object at index i via remove(i)

add/remove all objects in another collection ¢ via

addAll(c) /removeAll(c)

iterate over a list 1 in the same read-only fashion as used for arrays
via for(Object e : 1){ ... }

OOP with Java Thomas Weise 4/23

e Java provides several different implementations of this functionality

e Java provides several different implementations of this functionality

® java.util.ArrayList is the implementation we always use

e Java provides several different implementations of this functionality

® java.util.ArrayList is the implementation we always use

® java.util.Vector is basically the same, just slower (due to

synchronization, which is useless anyway)

List Implementations %0,

Java provides several different implementations of this functionality

® java.util.ArrayList is the implementation we always use

® java.util.Vector is basically the same, just slower (due to
synchronization, which is useless anyway)

® java.util.LinkedList is another slower implementation of the same
functionality (yes, someone will say linked lists are efficient for some special
cases, blablabla, but even if you have millions of elements, LinkedList will just

consome more memory and be slower than ArrayList)

OOP with Java Thomas Weise 5/23

Example for using ArrayList

Listing: Example for using ArrayList

import java.util.ArrayList;

public class ArrayListTest {

public static void main(Stringl[] args) {
ArrayList<String> list = new ArrayList<>()

list.add("Hello");
list.add("World.");
list.add("It's");
list.add("me.");
System.out.println(list);

int index = list.indexOf ("World.");
System.out.println(index);

list.remove (index);
System.out.println(list);

list.add(index, "World!!!");
System.out.println(list);

for(String string : list) {
System.out.print (string);
b

System.out.println();

ArrayList<String> list2 = new ArrayList<>()
1ist2.addAll(1ist);

list2.remove(1);

System.out.println(list2);

list.removeAll (1ist2);
System.out.println(list);

list.addAll (1ist2);
list.addAll (list);
System.out.println(list);

OOP-withJava Fhomas-Weise 6723

e As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

e As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

e Often, you want to compare based on object content, not just by
reference, i.e., based on equality

Object Equality and Identity %}

e As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

e Often, you want to compare based on object content, not just by
reference, i.e., based on equality

o If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

OOP with Java Thomas Weise 7/23

Object Equality and Identity %\

e As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

e Often, you want to compare based on object content, not just by
reference, i.e., based on equality

o If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

e Class 0Object provides a method public boolean equals(Object)
intended for this purpose

OOP with Java Thomas Weise 7/23

Object Equality and Identity %\

1AQ

As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

Often, you want to compare based on object content, not just by
reference, i.e., based on equality

If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

Class 0Object provides a method public boolean equals(Object)
intended for this purpose

Any subclass can override it to perform a class-specific comparison for
equality

OOP with Java Thomas Weise 7/23

Object Equality and Identity %\

1AQ

As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

Often, you want to compare based on object content, not just by
reference, i.e., based on equality

If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

Class 0Object provides a method public boolean equals(Object)
intended for this purpose

Any subclass can override it to perform a class-specific comparison for
equality

By default, it just does the same as == if you do not override it

OOP with Java Thomas Weise 7/23

Object Equality and Identity %\

As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

Often, you want to compare based on object content, not just by
reference, i.e., based on equality

If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

Class 0Object provides a method public boolean equals(Object)
intended for this purpose

Any subclass can override it to perform a class-specific comparison for

equality
By default, it just does the same as == if you do not override it
Java collections use equals instead of == to compare objects when

you search inside them

OOP with Java Thomas Weise 7/23

Object Equality and Identity %\

As we know, comparing object variables/expression with == only
yields true if both sides reference the exact same object, i.e., on
identity, i.e., if they point to the same memory location

Often, you want to compare based on object content, not just by
reference, i.e., based on equality

If you implement a class holding an integer, you want two instances
to be considered as equal if they have the same integer value stored
in them

Class 0Object provides a method public boolean equals(Object)
intended for this purpose

Any subclass can override it to perform a class-specific comparison for

equality
By default, it just does the same as == if you do not override it
Java collections use equals instead of == to compare objects when

you search inside them
equals must be implemented in a way so that

a.equals(b)== b.equals(a) 4

OOP with Java Thomas Weise 7/23

integer holder class without cquais override

Listing

integer holder class wit

public final class IntHolder {

private final int value;

public IntHolder(final int _value) {
this.value = _value;

b3

Q0verride

public String toString() {

return

b3

+ this.value;

public static void main(Stringl[] args)
IntHolder a = mew IntHolder(1);
IntHolder b = new IntHolder(2);
IntHolder ¢ = new IntHolder(1);

System.
System.
System.
System.
System

System.
System

System.
System.

out
out
out
out
out
out
out
out
out

.print (a System.out.
.print (a System.out.
.print (a System.out.
.print (b System.out.
.print (b System.out.
.print (b System.out.
.print (c System.out.
.print (¢ System.out.

.print (¢

System.out.

print('y');
print(',');
print(',")
print (')
print(',")
print('y")
print(',');
print(',")
print(',');

System.
System.
System.
System.
System.
System.
System.
System.
System.

.println(a.
.println(a.
.printin(a.
.println(b.
.println(b.
.println(b

.println(c.
.println(c.
.println(c.

t equals override

equals(a));
equals (b)) ;
equals(c));
equals(a));
equals (b)) ;
equals(c));
equals(a));
equals(b));
equals(c));

OOP with Java

Thomas Weise 8/23

integer holder class with cquais override

Listing:

public final cl

private final

integer holder class with equals override

ass IntHolderWithEquals {

int value;

public IntHolderWithEquals(final int _value) {

this.value

¥

Q0verride

_value;

public String toString() {

return

b3

@0verride

+ this.value;

public boolean equals(final Object o) {

return ((o

(((IntHolderWithEquals)o).value

instanceof IntHolderWithEquals) &k
this.value));

public static void main(String[] args) {

IntHolderWithEquals a = new IntHolderWithEquals(1);

IntHolderWithEquals b = new IntHolderWithEquals(2);

IntHolderWithEquals ¢ = new IntHolderWithEquals(1);

System.out.print (a System.out.print(','); System.out.println(a.equals(a))

System.out.print (a System.out.print(','); System.out.println(a.equals(b))

System.out.print (a System.out.print(','); System.out.println(a.equals(c))

System.out.print (b System.out.print(','); System.out.println(b.equals(a));
System.out.print (b System.out.print(','); System.out.println(b.equals(b))

System.out.print (b System.out.print(','); System.out.println(b.equals(c));
System.out.print(c == System.out.print(','); System.out.println(c.equals(a))

System.out.print (c System.out.print(','); System.out.println(c.equals(b));
System.out.print (c System.out.print(','); System.out.println(c.equals(c))

OOP-withJava

Fhomas-Weise

integer holder without cquais override in list

integer holder wit equals override in list

import java.util.ArrayList;

public class ArrayListWithoutEqualsTest {

public static void main(String[] args) {
ArrayList <IntHolder> list = new ArrayList<>();

list.add(new IntHolder (3));
IntHolder ih4 = new IntHolder (4);
list.add(ih4);

list.add(new IntHolder (-1));
list.add(new IntHolder(3));
System.out.println(list);

System.out.println(list.contains(new IntHolder(3)));
System.out.println(list.contains(new IntHolder(4)));
System.out.println(list.contains(ih4));

System.out.println(list.contains(new IntHolder(5)));

System.out.println(list.index0f (new IntHolder(3)));
System.out.println(list.index0f (new IntHolder(4)));
System.out.println(list.index0f (ih4));

System.out.println(list.index0f (new IntHolder (5)));

System.out.println(list.lastIndex0f (new IntHolder(3)));
System.out.println(list.lastIndex0f (new IntHolder(4)));
System.out.println(list.lastIndex0f (ih4));

System.out.println(list.lastIndex0f (new IntHolder(5)));

OOP with Java Thomas Weise 10/23

integer holder with cquais override in list

Listing: integer holder with equals override in

import java.util.ArrayList;
public class ArraylListWithEqualsTest {

public static void main(String[] args) {
ArrayList<IntHolderWithEquals> list = new ArrayList<>();

list.add(new IntHolderWithEquals(3));
IntHolderWithEquals ih4 = new IntHolderWithEquals (4);
list.add(ih4);

list.add(new IntHolderWithEquals(-1));

list.add(new IntHolderWithEquals(3));
System.out.println(list);

System.out.println(list.contains(new IntHolderWithEquals(3)));
System.out.println(list.contains(new IntHolderWithEquals(4)));
System.out.println(list.contains(ih4));

System.out.println(list.contains(new IntHolderWithEquals(5)));

System.out.println(list.index0f (new IntHolderWithEquals(3)));
System.out.println(list.index0f (new IntHolderWithEquals(4)));
System.out.println(list.index0f (ih4));

System.out.println(list.index0f (new IntHolderWithEquals(5)));

System.out.println(list.lastIndex0f (new IntHolderWithEquals(3)));
System.out.println(list.lastIndex0f (new IntHolderWithEquals(4)));
System.out.println(list.lastIndex0f (ih4));

System.out.println(list.lastIndex0f (new IntHolderWithEquals(5)));

OOP with Java Thomas Weise

11/23

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value
e There are quite a few implementations of that functionality

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value
e There are quite a few implementations of that functionality:
e java.util.HashMap : This is the implementation we will always use

Maps

>
<

”

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

e There are quite a few implementations of that functionality:

e java.util.HashMap : This is the implementation we will always use
e java.util.HashTable : A slower implementation of the same

functionality (due to useless synchronization)

OOP with Java Thomas Weise 12/23

Maps

>
<

”

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
had an example for a data structure storing key-value relationships,
i.e., a map

e Java provides utility classes for this purpose, which can store, for each
(unique) key, one associated value

e There are quite a few implementations of that functionality:

e java.util.HashMap : This is the implementation we will always use
e java.util.HashTable : A slower implementation of the same

functionality (due to useless synchronization)
e java.util.Dictionary : An obselete implementation of similar

functionality (never use this one)

OOP with Java Thomas Weise 12/23

Example for using HashMap

AQ!

Listing: Example for using HashMap

import java.util.HashMap;

public class HashMapTest {

public static void main(String[] args) {
HashMap<String,String> map = new HashMap<>();

map.put ("Hello", “World!");
map.put ("It's", "me!");
map.put ("Professor", "Weise");
map.put ("Weise", “Thomas") ;
map.put ("Teacher", "Weise");

System.out.println(map);

map.put ("It's", “"you,.notume!");
map.put ("Professor", "Jacky,Chan");
System.out.println(map);

System.out.println(map.remove ("Professor"));
System.out.println(map);

System.out.println(map.entrySet());
System.out.println(map.keySet ());

System.out.println(map.values());

HashMap<String,String> other = new HashMap<>();

other.put("Hello", "China");
other.put ("Country", "China");
other.put("Weise", "Teacher");

System.out.println(other);

map.putAll (other);
System.out.println(map);

for(String key : map.keySet()) {

System.out.println(map.get (key));
i

OOP with Java

13/23

e Sometimes, you may want to use your class as key type for a map

e Sometimes, you may want to use your class as key type for a map

e This is dangerous

e Sometimes, you may want to use your class as key type for a map

e This is dangerous

e How does a map work?

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?

e A HashMap in Java tries to provide very fast access

e Sometimes, you may want to use your class as key type for a map

e This is dangerous
e How does a map work?
e A HashMap in Java tries to provide very fast access

o Therefore, it internally uses an array table of entries

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?

e A HashMap in Java tries to provide very fast access

o Therefore, it internally uses an array table of entries

e When looking up a key, it first converts it into an int

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?

e A HashMap in Java tries to provide very fast access

o Therefore, it internally uses an array table of entries

e When looking up a key, it first converts it into an int

e Then wraps this int into the range 0 ... table.length-1

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?

e A HashMap in Java tries to provide very fast access

o Therefore, it internally uses an array table of entries

e When looking up a key, it first converts it into an int

e Then wraps this int into the range 0 ... table.length-1

e This is where a linked list of entries with the keys mapping to the same
index is located

Maps with our own Key Classes %()

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?
e A HashMap in Java tries to provide very fast access
e Therefore, it internally uses an array table of entries
e When looking up a key, it first converts it into an int
e Then wraps this int into the range 0 ... table.length-1
e This is where a linked list of entries with the keys mapping to the same
index is located
o |deally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes %0,

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?
e A HashMap in Java tries to provide very fast access
e Therefore, it internally uses an array table of entries
e When looking up a key, it first converts it into an int
e Then wraps this int into the range 0 ... table.length-1
e This is where a linked list of entries with the keys mapping to the same
index is located
o |deally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not
o Otherwise, we can find it somewhere in the list (comparing keys via
equals)

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes

”

>
<

e Sometimes, you may want to use your class as key type for a map
e This is dangerous
e How does a map work?

A HashMap in Java tries to provide very fast access

Therefore, it internally uses an array table of entries

When looking up a key, it first converts it into an int

Then wraps this int into the range 0 ... table.length-1

This is where a linked list of entries with the keys mapping to the same
index is located

Ideally, the list is either only 1 element long or null , so it is
immediately clear whether the key is in the map or not

Otherwise, we can find it somewhere in the list (comparing keys via
equals)

If there are too many elements in the map compared to
table.length , the table is resized

OOP with Java Thomas Weise 14/23

Sometimes, you may want to use your class as key type for a map

This is dangerous

How does a map work?
What does this mean?

Sometimes, you may want to use your class as key type for a map

This is dangerous

How does a map work?

What does this mean?
o Essentially, we need to provide a way for the map to translate our key
objects to int s

Sometimes, you may want to use your class as key type for a map

This is dangerous

How does a map work?
What does this mean?
o Essentially, we need to provide a way for the map to translate our key
objects to int s
e This is done via the public int hashCode() method of class Object

Sometimes, you may want to use your class as key type for a map

This is dangerous

How does a map work?
What does this mean?
o Essentially, we need to provide a way for the map to translate our key
objects to int s
e This is done via the public int hashCode() method of class Object
e Which does, by default, return something like the memory address of
the object

Sometimes, you may want to use your class as key type for a map

This is dangerous

How does a map work?
What does this mean?
o Essentially, we need to provide a way for the map to translate our key
objects to int s
e This is done via the public int hashCode() method of class Object
o Which does, by default, return something like the memory address of
the object

So what does this mean?

Maps with our own Key Classes %\

Sometimes, you may want to use your class as key type for a map
This is dangerous
How does a map work?

What does this mean?

e Essentially, we need to provide a way for the map to translate our key
objects to int s

e This is done via the public int hashCode() method of class Object
e Which does, by default, return something like the memory address of
the object
So what does this mean?
If we do not override public int hashCode() tO use our object's data

instead of the memory address, HashMap will (almost always) be
unable to find our keys. ..

OOP with Java Thomas Weise 14/23

Maps with our own Key Classes %\

Sometimes, you may want to use your class as key type for a map
This is dangerous
How does a map work?

What does this mean?

e Essentially, we need to provide a way for the map to translate our key
objects to int s

e This is done via the public int hashCode() method of class Object

e Which does, by default, return something like the memory address of
the object

So what does this mean?
If we do not override public int hashCode() tO use our object's data

instead of the memory address, HashMap will (almost always) be
unable to find our keys. ..

Of course we also need to override equals !

OOP with Java Thomas Weise 14/23

integer holder class without nashcode override

r holder class wi t hashCode override

Listing

public final class IntHolderWithEqualsWithoutHashCode {
private final int value;
public IntHolderWithEqualsWithoutHashCode(final int _value) {

this.value = _value;

}

@Override
public String toString() {

return "" + this.value;
}
@0verride
public boolean equals(final Object o) {
return ((o instanceof IntHolderWithEqualsWit) w
(((IntHolderWithEqualsWithoutHashCode)o) .value this.value));
b

public static void main(String[] args)
IntHolderWithEqualsWithoutHashCode a = new IntHolderWithEqualsWithoutHashCode (1);
IntHolderWithEqualsWithoutHashCode b = new IntHolderWithEqualsWithoutHashCode (2);
IntHolderWithEqualsWithoutHashCode ¢ = new IntHolderWithEqualsWithoutHashCode (1);

System.out.println(a.hashCode());
System.out.println(b.hashCode());
System.out.println(c.hashCode());

System.out.print(a
System.out.print(a
System.out.print(a
System.out.print (b
System.out.print (b
System.out.print (b
System.out.print (c
System.out.print(c
System.out.print (c

System.out.print(','); System.out.println(a.equals(a));
System.out.print(','); System.out.println(a.equals(b));
System.out.print(','); System.out.println(a.equals(c));
System.out.print(','); System.out.println(b.equals(a));
System.out.print(','); System.out.println(b.equals(b));
System.out.print(','); System.out.println(b.equals(c));
System.out.print(','); System.out.println(c.equals(a));
System.out.print(','); System.out.println(c.equals(b));
System.out.print(','); System.out.println(c.equals(c));

Y OOP with Java Thomas Weise 15/23

integer holder without hashcode override in hash map %ﬁ)’

Listing: integer holder wi t hashCode override in hash map

import java.util.HashMap;

public class HashMapWithoutHashCodeTest {

public static void main(String[] args) {
HashMap<IntHolderWithEqualsWithoutHashCode, String> map = new HashMap<>();

map.put (new IntHolderWithEqualsWithoutHashCode (1), "A");
System.out.println(map);
map.put (new IntHolderWithEqualsWithoutHashCode(2), "B");
System.out.println(map);
map.put (new IntHolderWithEqualsWithoutHashCode(3), "C");
System.out.println(map);
map.put (new IntHolderWithEqualsWithoutHashCode (1), "D");
System.out.println(map);
map.put (new IntHolderWithEqualsWithoutHashCode(3), "E");
System.out.println(map);

System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode(1)));
System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode(2)));
System.out.println(map.get (new IntHolderWithEqualsWithoutHashCode (3)));
System.out.println(map.get(new IntHolderWithEqualsWithoutHashCode (4)));

OOP with Java Thomas Weise 16/23

integer holder class with hashcode override

Listing: integer holder class wi

public final class IntHolderWithEqualsAndHashCode {

private final int value;

public IntHolderWithEqualsAndHashCode(final int _value) {
this.valu value;

}

Override

public String toString() {
return "' + this.value;

b

QOverride

public boolean equals(final Object
return ((o instanceof IntHolderWithEqualsAndHashCode) k&
(((IntHolderWithEqualsAndHashCode)o) .value =

hashCode override

this.value));

b

@0verride

public int hashCode() {
return this.value;

b

public static void main(Stringll args) {
IntHolderWithE: a = new IntHo 1 @
IntHolderWithEqual b = new IntHo 1s. @
IntHolderWithEqual ¢ = now IntHo 1 W

System.out.printin(a.hashCode ());
System.out . println(b.hashCode));
System.out . println(c.hashCode ());

System.out.print(a == a); System.out.print(','); System.out
System.out.print(a == b); System.out.print(','); System.out
System.out.print(a == ¢); System
System.out.print (b == a); System.
)i System

Lout

) out

i System. 0) out

i System)i out

i System. 0) -out

System.out.print(c == c); System.out.print('.'); System.out

OOP with Java

Lout.

printin(a.equals(a));
printin(a.equals(b));
printlin(a.equals(c));
printin(b.equals(a));
println(b.equals (b));
printin(b.equals(c));
println(c.equals(a));
println(c.equals(b));

.println(c.equals(c));

Thomas Weise

17/23

Yy

integer holder with nashcode override in hash map

Listing: integer holder with hashCode override in hash ma

import java.util.HashMap;

public class HashMapWithHashCodeTest {

public static void main(Stringl[] args) {

HashMap<IntHolderWithEqualsAndHashCode,

map.put (new IntHolderWithEqualsAndHashCode (1), "A");
System.out.println(map);
map.put (new IntHolderWithEqualsAndHashCode (2), "B");
System.out.println(map);
map.put (new IntHolderWithEqualsAndHashCode(3), "C");
System.out.println(map);
map.put (new IntHolderWithEqualsAndHashCode (1), "D");
System.out.println(map);
map.put (new IntHolderWithEqualsAndHashCode (3), "E");

System.

System.
System.
System.
System.

out

out
out
out
out

.println(map);

.println(map.get (new
.println(map.get (new
.println(map.get (new
.println(map.get (new

IntHolderWithEqualsAndHashCode (1)));
IntHolderWithEqualsAndHashCode (2)));
IntHolderWithEqualsAndHashCode (3)));
IntHolderWithEqualsAndHashCode (4)));

String> map = new HashMap<>();

OOP with Java

Thomas Weise

18/23

e There is a very simple and important relationship between equals
and hashCode

e There is a very simple and important relationship between equals
and hashCode :

if a.equalis(®) then it must hold that a.hashCode()== b.hashCode()

e There is a very simple and important relationship between equals
and hashCode :

if a.equalis(®) then it must hold that a.hashCode()== b.hashCode()

e This means that, whenever we override equals , we also need to

override hashCode and vice versa

e There is a very simple and important relationship between equals
and hashCode :

if a.equalis(®) then it must hold that a.hashCode()== b.hashCode()

e This means that, whenever we override equals , we also need to
override hashCode and vice versa

e But remember, this is a one-way relationship

Relationship of cquais and hashcode %\’

e There is a very simple and important relationship between equals
and hashCode :

if a.equals(b) then it must hold that a.hashCode()== b.hashCode ()

e This means that, whenever we override equals , we also need to
override hashCode and vice versa
e But remember, this is a one-way relationship

o If two objects have the same hash code, they do not necessarily need
to be equal, i.e., from a.hashCode()== b.hashCode() it does not follow

that a.equals(b)

OOP with Java Thomas Weise 19/23

e A Set is a data structure which can either contain or not contain an
element

e A Set is a data structure which can either contain or not contain an
element

e Different from lists, each element can occur at most once

e A Set is a data structure which can either contain or not contain an
element

e Different from lists, each element can occur at most once

e You can imagine it as a map with object keys and Boolean values

A set is a data structure which can either contain or not contain an
element

Different from lists, each element can occur at most once

You can imagine it as a map with object keys and Boolean values
(actually, it is not that far from this in reality)

Your keys for the set must implement both equals and hashCode

A set is a data structure which can either contain or not contain an
element

Different from lists, each element can occur at most once

You can imagine it as a map with object keys and Boolean values
(actually, it is not that far from this in reality)

Your keys for the set must implement both equals and hashCode

We will always use the Java utility class java.util.HashSet for
representing sets

Example for using Hashset

W

B>
[/

Listi Example for using HashSet

import java.util.HashSet;

public class HashSetTest {

public static void main(String[] args) {
HashSet<String> set = new HashSet<>();

System.out
System.out
System.out
System.out
System.out
System.out
System.out
System.out
System.out
System.out

System.out
System.out
System.out
System.out
System.out
System.out

.println(set.add("Hello"));
.println(set);
.println(set.add("World!"));
.println(set);
.println(set.add("World!"));
.println(set);
.println(set.add("It's"));
.println(set);
.println(set.add("me!"));
.println(set);

.println(set.contains("It's"));
.println(set.remove("It's"));
.println(set);
.println(set.contains("It's"));
.println(set.remove("It's"));
.println(set);

OOP with Java Thomas Weise 21/23

Summary

”

>
<

e We have learned about the basic collections offerent by Java
e These include Lists, Maps, and Sets

e Using them properly with our own classes requires us to override the
methods public boolean equals(Object) and public int hashCode ()

inherited from class 0Object
e We must ensure that a.equals(b) = a.hashCode()== b.hashCode ()

e We noticed that all of Java's collections make heavy use of generics
we discussed in Lesson 21: Generics

OOP with Java Thomas Weise 22/23

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Lists
	Lists
	List Implementations
	Example for using ArrayList

	Equality vs. Identity
	Object Equality and Identity
	integer holder class without equals override
	integer holder class with equals override
	integer holder without equals override in list
	integer holder with equals override in list

	Maps
	Maps
	Example for using HashMap

	Equality and hashCode()
	Maps with our own Key Classes
	integer holder class without hashCode override
	integer holder without hashCode override in hash map
	integer holder class with hashCode override
	integer holder with hashCode override in hash map
	Relationship of equals and hashCode

	Sets
	Sets
	Example for using HashSet

	Summary
	Summary

	Presentation End

