LR B

HEFEI UNIVERSITY

OOP with Java

21. Generics

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR

http://iao.hfuu.edu.cn
SREER HRHRE/E2R

##%ﬂlﬁﬁﬁ%

2 FAR ﬂ’fﬁ }ZWT
&+ L‘ﬂ RHA

4 he &L X 230601

2% &7&% L 445 K995

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

0 Introduction

@ Generics

® Methods with Generic Parameters
@ Bounds for Type Parameters

@ Erasure

@ Generic Arrays

@ |nheritance and Generics

@ Summary

OOP with Java Thomas Weise

This is going to be a tough lesson.

Please listen carefully and ask questions whenever
something is unclear.

¢ Imagine you want to create a class for holding a pair of objects, say a
key-value association

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

o this seems to be a rather general utility class

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
o this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
o this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

this seems to be a rather general utility class

ideally, you want this class to be useful for any kind of key/value object

you want that the algorithms you implement using this class can be

applied to any kind of key/value objects

so you would implement it using Object key/value instance variables

Introduction %0,

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
e this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects
e so you would implement it using Object key/value instance variables

e then you can use your class in many different places, like the Entry
class in the Map example in Lesson 18: Visibility, Encapsulation,

final , and Inner Classes

OOP with Java Thomas Weise 4/38

Introduction %0'

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
e this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects
e so you would implement it using Object key/value instance variables

e then you can use your class in many different places, like the Entry
class in the Map example in Lesson 18: Visibility, Encapsulation,

final , and Inner Classes

e Sometimes, you may want to use your class to store:
e String - String associations

OOP with Java Thomas Weise 4/38

Introduction %0'

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
e this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects
e so you would implement it using Object key/value instance variables

e then you can use your class in many different places, like the Entry
class in the Map example in Lesson 18: Visibility, Encapsulation,

final , and Inner Classes

e Sometimes, you may want to use your class to store:
e String - String associations

e Integer - String associations

OOP with Java Thomas Weise 4/38

Introduction %0'

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
e this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects
e so you would implement it using Object key/value instance variables

e then you can use your class in many different places, like the Entry
class in the Map example in Lesson 18: Visibility, Encapsulation,

final , and Inner Classes
e Sometimes, you may want to use your class to store:
e String - String associations
e Integer - String associations
e other stuff

OOP with Java Thomas Weise 4/38

Introduction %o»

e Imagine you want to create a class for holding a pair of objects, say a
key-value association
e this seems to be a rather general utility class
e ideally, you want this class to be useful for any kind of key/value object
e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects
e so you would implement it using Object key/value instance variables

e then you can use your class in many different places, like the Entry
class in the Map example in Lesson 18: Visibility, Encapsulation,

final , and Inner Classes
e Sometimes, you may want to use your class to store:
e String - String associations
e Integer - String associations
e other stuff
e but then you will always need to use type casts (see Lesson 20) when
reading the key/value instance variables

OOP with Java Thomas Weise 4/38

Introduction

”

>
<

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

this seems to be a rather general utility class

ideally, you want this class to be useful for any kind of key/value object
you want that the algorithms you implement using this class can be
applied to any kind of key/value objects

so you would implement it using Object key/value instance variables
then you can use your class in many different places

but then you will always need to use type casts (see Lesson 20) when
reading the key/value instance variables

e This creates several problems

OOP with Java Thomas Weise 4/38

Introduction %\

1AQ

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

e this seems to be a rather general utility class

e ideally, you want this class to be useful for any kind of key/value object

e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects

e so you would implement it using Object key/value instance variables

e then you can use your class in many different places

e but then you will always need to use type casts (see Lesson 20) when
reading the key/value instance variables

e This creates several problems:

e you may sometimes do a wrong type cast and the compiler cannot
check whether you use the right types

OOP with Java Thomas Weise 4/38

Introduction

”

>
<

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

this seems to be a rather general utility class

ideally, you want this class to be useful for any kind of key/value object
you want that the algorithms you implement using this class can be
applied to any kind of key/value objects

so you would implement it using Object key/value instance variables
then you can use your class in many different places

but then you will always need to use type casts (see Lesson 20) when
reading the key/value instance variables

e This creates several problems:

you may sometimes do a wrong type cast and the compiler cannot
check whether you use the right types
this also means more code, more code = harder to read and maintain

OOP with Java Thomas Weise 4/38

Introduction

”

>
<

e Imagine you want to create a class for holding a pair of objects, say a
key-value association

e this seems to be a rather general utility class

e ideally, you want this class to be useful for any kind of key/value object

e you want that the algorithms you implement using this class can be
applied to any kind of key/value objects

e so you would implement it using Object key/value instance variables

e then you can use your class in many different places

e but then you will always need to use type casts (see Lesson 20) when
reading the key/value instance variables

e This creates several problems:

e you may sometimes do a wrong type cast and the compiler cannot
check whether you use the right types
e this also means more code, more code = harder to read and maintain

o Let's look at an example

OOP with Java Thomas Weise 4/38

A class for holding a pair of objects %\,

1AQ

Listing: A class for holding a pair of objects

package cn.edu.hfuu.iao.collections;

public class Pair {
public final Object key;

private Object value;

public Pair(final Object _key, final Object _value) {
this.key = _key;
this.value = _value;

public void setValue(final Object _value) {
this.value = _value;

public Object getValue() {
return this.value;
}
¥

OOP with Java Thomas Weise 5/38

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.Pair;

public class PairTest {

public static void main(String[] args) {
Pair stringPair = new Pair("Hello", "World!");
System.out.println(stringPair.key);
System.out.println(stringPair.getValue());

Pair stringIntegerPair = new Pair("int", new Integer(3));
System.out.println(stringIntegerPair.key);
System.out.println(stringIntegerPair.getValue());

String keyString = (String) (stringPair.key)
System.out.println(keyString);

String valueString = (String) (stringPair.getValue());
System.out.println(valueString);

stringIntegerPair = stringPair;
System.out.println(stringIntegerPair.key);
System.out.println(stringIntegerPair.getValue());

OOP with Java Thomas Weise

6/38

e We know that stringPair contains two Strings, and by its name, we
clearly intent it to only hold two strings

e We know that stringPair contains two Strings, and by its name, we
clearly intent it to only hold two strings

e The stringIntegerPair holds a String and an Integer, and it is
intended for this

e We know that stringPair contains two Strings, and by its name, we
clearly intent it to only hold two strings

e The stringIntegerPair holds a String and an Integer, and it is
intended for this

e We want to use class Pair for both of these objects, because, well, it
sort of fits

e We know that stringPair contains two Strings, and by its name, we
clearly intent it to only hold two strings

e The stringIntegerPair holds a String and an Integer, and it is
intended for this

e We want to use class Pair for both of these objects, because, well, it
sort of fits

e But this provides no type safety, we would need to use instanceof
and explicit type casts all the time

The Problem %\

e We know that stringPair contains two Strings, and by its name, we
clearly intent it to only hold two strings

e The stringIntegerPair holds a String and an Integer, and it is
intended for this

e We want to use class Pair for both of these objects, because, well, it
sort of fits

e But this provides no type safety, we would need to use instanceof
and explicit type casts all the time

¢ And we cannot really control the types of the stuff actually stored in
the pair if it comes from elsewhere

OOP with Java Thomas Weise 7/38

e Classes can have (arbitrarily many) type parameters

e Classes can have (arbitrarily many) type parameters
e The type parameters can (almost) be used like “real types” inside the
class

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e Classes can have (arbitrarily many) type parameters
e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified
e We can create a generic class for pairs

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e We can create a generic class for pairs

e The class could have two type parameters k and v, one (k) for the
key type, one (v) for the value type

Generics %ﬁ)

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e We can create a generic class for pairs

e The class could have two type parameters K and v, one (K) for the
key type, one (v) for the value type

e When implementing the class, we can then use X and v as if they
were normal class types

OOP with Java Thomas Weise 8/38

Generics %\

1AQ

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e We can create a generic class for pairs

e The class could have two type parameters K and v, one (K) for the
key type, one (v) for the value type

e When implementing the class, we can then use ¥ and v as if they
were normal class types

e When instantiating the generic class, we need to provide concrete
types as replacement for the Kk and Vv, say String and Integer .

OOP with Java Thomas Weise 8/38

Generics %\

1AQ

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e We can create a generic class for pairs

e The class could have two type parameters K and v, one (K) for the
key type, one (v) for the value type

e When implementing the class, we can then use ¥ and v as if they
were normal class types

e When instantiating the generic class, we need to provide concrete
types as replacement for the Kk and Vv, say String and Integer .

e The instances are then only assignment compatible if they have the
same type replacements

OOP with Java Thomas Weise 8/38

Generics %\

1AQ

e Classes can have (arbitrarily many) type parameters

e The type parameters can (almost) be used like “real types” inside the
class

e When instantiating the class, the actual types of the type parameters
must be specified

e We can create a generic class for pairs

e The class could have two type parameters K and v, one (K) for the
key type, one (v) for the value type

e When implementing the class, we can then use ¥ and v as if they
were normal class types

e When instantiating the generic class, we need to provide concrete
types as replacement for the Kk and Vv, say String and Integer .

e The instances are then only assignment compatible if they have the
same type replacements

o Generic parameters must be classes, they can never be primitive
types! (because of erasure, see later)

OOP with Java Thomas Weise 8/38

A generic class for holding a pair of objects

Listing: A generic class for holding a pair of objects

package cn.edu.hfuu.iao.collections;

public class GenericPair<kK, V> {
public final K key;

private V value;

public GenericPair(final K _key, final V _value) {
this.key = _key;
this.value = _value;

public void setValue(final V _value) {
this.value = _value;

public V getValue() {
return this.value;

}

v OOP with Java Thomas Weise

9/38

e The generic type parameters K and V are in some sense parameters
of a class

e The generic type parameters K and V are in some sense parameters
of a class

e We can describe their meaning in Javadoc comments in the form of
@param <K> meaning of K and @param <V> meaning of V

use case for the generic class for holding a pair of objects

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericPair;

public class GenericPairTest {

public static void main(String[] args) {
GenericPair<String,String> stringPair =
new GenericPair<String,String>("Hello", "World!");

System.out.println(stringPair.key);
System.out.println(stringPair.getValue());

GenericPair <String,Integer> stringlntegerPair =
new GenericPair<>("int", new Integer(3));

System.out.println(stringIntegerPair.key);

System.out.println(stringIntegerPair.getValue());

String keyString = stringPair.key;
System.out.print (keyString);

String valueString = stringPair.getValue();
System.out.print (valueString);

OOP with Java Thomas Weise 11/38

A use case for a generic object holding a generic object %c),

use case for a generic object holding a generic object

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericPair;

public class GenericPairParameterizedParametersTest {

public static void main(String[] args) {
GenericPair<String, Integer> stringIntegerPair;
GenericPair<String, GemericPair<String, Integer>> wrappedPair;

stringIntegerPair =
new GenericPair<>("int", new Integer(3));

wrappedPair = new GemericPair<>("Hello", stringIntegerPair);
System.out.println(wrappedPair.key);
System.out.println(wrappedPair.getValue () .key);
System.out.println(wrappedPair.getValue ().getValue());

Integer integer = wrappedPair.getValue().getValue();
System.out.println(integer);

wrappedPair.getValue () .setValue(new Integer(6));
System.out.println(wrappedPair.getValue ().getValue());

wrappedPair.setValue (new GenericPair<>("newInt", new Integer(7)));
System.out.println(wrappedPair.key);
System.out.println(wrappedPair.getValue () .key);
System.out.println(wrappedPair.getValue ().getValue());

OOP with Java Thomas Weise 12/38

e Generics have serval advantages

e Generics have serval advantages:
o stronger type checks at compile time

e Generics have serval advantages:

o stronger type checks at compile time
e reduce the number of type casts / need for instanceof

e Generics have serval advantages:
o stronger type checks at compile time
e reduce the number of type casts / need for instanceof
o allow us to implement generic algorithms and data structures without
sacrificing type safety

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we

did an example on with a Map where we can store key-value
relationships

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we

did an example on with a Map where we can store key-value
relationships

o Let us take a look at it again (this time using our Pair classes
internally)

e In Lesson 18: Visibility, Encapsulation, final , and Inner Classes, we
did an example on with a Map where we can store key-value
relationships

o Let us take a look at it again (this time using our Pair classes
internally)

e And then make it generic

A non-generic/ object -based uap Class

Listing: Class representing a n

package cn.edu.hfuu.iao.collections;

public final class Map {
private Pair(l entries;

public Map() {
this.entries = new Pair[32];
¥

public final void put(final Object key, fimal Object value) {
for (int index = 0; & this.entries.length; index+s) {
if (this.entries[index] == null) {

this. entries(index] = nev Pair(key, value);

return;

if (this.enmtries[index].key == key) {

this.entries [index].setValue(value);
return;

b

Pair(] newEntries = new Pair([this.entries.lemgth »
for(int 1 = this.entries.length; (i
newEntries [this.entries.length]

this.entries = newEntries;
¥

) { newEntries[i] = this.entries[il; }
new Pair(key, value);

public final Dbject get(final Object key) {
for (Pair emtry : this.emtries) {
if (entry == null) { return null; }
if (entry.key == key) { return entry.getValue(); }
b

return mull;

public final String toString() {
String string = ""

for (Pair emtry

if (entry

if (string !

this.entries) {
null) { return string; }

) { string += "%
string += entry.key + '=' + entry.getValue();

return string;

A . v
O0OPwith Java TFhomas~Weise 15738

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.Map;

public class MapTest {

public static void main(Stringl[] args) {
Map map = new Map();

map.put ("Hello", "World!");
System.out.println(map);

map.put (" Country", "China");
System.out.println(map);
System.out.println(map.get ("Country"));
System.out.println(map.get("Hello"));
System.out.println(map.get ("World!"));

map . put (" Computer Science", "Fun");
System.out.println(map);

String str = (String) (map.get("Hello"));
System.out.println(str);

Object objl = str;

Object obj2 = "You";

map . put (obj1, obj2);
System.out.println(map.get (obj1));

OOP with Java Thomas Weise

16/38

A Generic vap Class
AQ

Listin neric class representing a Map

package cn.edu.hfuu.iao.collections;

public final class GemericMap<k, V> {

private GemericPair<k,V>[] entries;

©Suppressiarnings ("unchecked")
public Gemericap()
this.entries = new GenericPair(32];

3

©Suppressuarnings ("unchecked")
public final void put(final K key, fimal V value) {

index < this.entries.length; index++) {

for (int index = 0;
if (this.entries(index] == mull) {
this.entries[index] = now GemericPair<>(key, value);

¥
if (this.entries(index].key == key)
this.entries [index].setValue (value);

21;

3
GenericPair<K, V>[] newEntries = nmew GemericPair[this.emtries.length
;) { newEntries[i] = this.entries[il; }

for(int 1 = this.entries.length; (--1) >=
neuEntries[this.entries.length] = new GemericPair<>(key, value);
this.entries = nevEntries:
b
public final V get(final K key) {
for (GemericPair<K,U> entry : this.entries) {
if (emtry == null) { revurn mull; }
it (entry.key == key) { revurn entry.getValue(); }
>
return null;
public final String toString() {
nry : this.entries) {
null) { revurn string;)
g = "t
string += entry.key + "=" + entry.getValueQ);
roturn string;
—
Q0P with lava Thomas Weise 17/38 v

Example for Using our Generic vap

Listing: Class using our generic Map clas

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericMap;

public class GenmericMapTest {

public static void main(Stringl] args) {
GenericMap<String,String> map = new GenericMap<>();

map.put ("Hello", "World!
System.out.println(map);

map . put ("Country", "China");
System.out.println(map);
System.out.println(map.get ("Country"));
System.out.println(map.get("Hello"));
System.out.println(map.get ("World!"));

map . put ("Computer Science", "Fun");
System.out.println(map);

String str = map.get("Hello");
System.out.println(str);

Object objl = str;
Object obj2 = "You";

map.put ((String)objl, (String)obj2);

System.out.println(map.get ((String)objl));

OOP with Java Thomas Weise 18/38

e Methods can have generic type parameters as well, like classes

e Methods can have generic type parameters as well, like classes

e These then need to be specified before the return type

Example for methods with generic parameters

AQ!

Listi Example for methods with generic parameters

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericPair;

public class GenericsAndStaticFunctions {

static <K, V> GenericPair<K, V> makePair(final K key, final V value) {
return new GenmericPair<>(key, value);

b

static <K, V> boolean isSame(GenericPair<K, V> pairl, GenericPair<K, V> pair2) {
return ((pairi.key pair2.key) && (pairl.getValue() == pair2.getValue()));
¥

public static void main(Stringl] args) {
GenericPair<String, String> stringPair = makePair("Hello", "World!");

System.out.println(stringPair.key);
System.out.println(stringPair.getValue());

GenericPair<String, Integer> stringlntegerPair = makePair("int", new Integer(3));
System.out.println(stringIntegerPair.key);
System.out.println(stringIntegerPair.getValue());

String keyString = stringPair.key;
System.out.println(keyString);

String valueString = stringPair.getValue();
System.out.println(valueString);

System.out.println(isSame(stringPair, makePair("Hello", "World!")));
System.out.println(isSame(stringPair, makePair ("Hello", "You")));
¥ OOP with Java Thomas Weise 20/38

e We can define lower bounds for a type parameter

e We can define lower bounds for a type parameter

e Normal type parameter: class A { ...

e We can define lower bounds for a type parameter

e Normal type parameter: class A { ...

e Type parameter with lower bound C: class A<B extends C> { ...

We can define lower bounds for a type parameter

Normal type parameter: class A { ...

Type parameter with lower bound C: class A<B extends C> { ...

Meaning: class A can only be instantiate with a value for B which is
either class ¢ itself or another class D which is a direct or indirect
subclass of ¢

A base class for our example %\’

Listing: Class Printable

package cn.edu.hfuu.iao.bounds;

/** a base class for all printable objects */
public class Printable {

/** print this object */
public void print() {
System.out.println("this_ is a,printable object"); //éN

}

OOP with Java Thomas Weise 22/38

The first subclass for our example %\’

Listing: Class FunnyPrintable

package cn.edu.hfuu.iao.bounds;

unny e */
public class FunnyPrintable extends Printable {

nt th object */

@Override

public void print() {
System.out.println("Whats, the,object-oriented, way, to ,become wealthy? ,Inheritance");

OOP with Java Thomas Weise 23/38

The second subclass for our example %\’

1AQ

Listing: Class MathPrintable

package cn.edu.hfuu.iao.bounds;

public class MathPrintable extends Printable {
private final int number;

public MathPrintable(int _number) { this.number = _number; }

@Override
public void print() {
System.out.println(this.number);
}
}

OOP with Java Thomas Weise 24/38

The generic container for two printables (with lower boun A\\’
O>

Listing: Class TwoPrintables

package cn.edu.hfuu.iao.bounds;

public class TwoPrintables<T extends Printable> extends Printable {
private final T a;

private final T b;

public TwoPrintables(final T _a, final T _b) {
this.a = _a; this.b = _b;

}

@0verride
public void print() {
this.a.print ();
this.b.print);
}
}

OOP with Java Thomas Weise 25/38

An example for instantiating with lower-bound generic ty

AQ>

Listing: Class TwoPrintablesTes

package cn.edu.hfuu.iao.bounds;

public class TwoPrintablesTest {

public static void main(Stringl[] args) {
FunnyPrintable funny = new FunnyPrintable();
MathPrintable mathl = new MathPrintable(1);
MathPrintable math2 = new MathPrintable (2);

funny.print () ;
mathl.print ();
math2.print();

TwoPrintables<Printable> twol = new TwoPrintables<>(funny, math1);
twol.print ();

TwoPrintables<MathPrintable> two2 = new TwoPrintables<>(mathl, math2);
two2.print () ;

TwoPrintables<TwoPrintables<MathPrintable>> four = new TwoPrintables<>(
new TwoPrintables<>(new MathPrintable(1), new MathPrintable(2)),
new TwoPrintables<>(new MathPrintable(3), new MathPrintable(4)));

four.print ();

OOP with Java Thomas Weise

e We can define lower bounds for a type parameter in the form
class A<B extends C> { ...

e We can define lower bounds for a type parameter in the form
class A<B extends C> { ...

o It makes no real sense to define an upper bound U for a class type
parameter, as this would mean that we can store anything super U in
there, starting of Object

e We can define lower bounds for a type parameter in the form
class A<B extends C> { ...

o It makes no real sense to define an upper bound U for a class type
parameter, as this would mean that we can store anything super U in

there, starting of Object

e But sometimes, in type-parameterized methods, we may need do deal
with this range

Upper Bounds and Wildcards for Type Parameters %ﬁ)’

We can define lower bounds for a type parameter in the form
class A<B extends C> { ...

o It makes no real sense to define an upper bound U for a class type
parameter, as this would mean that we can store anything super U in

there, starting of Object
e But sometimes, in type-parameterized methods, we may need do deal
with this range

e Also, sometimes, we may not really care about the actual type of a
parameter, as long as it obeys a certain lower bound

OOP with Java Thomas Weise 27/38

Upper Bounds and Wildcards for Type Parameters %ﬁ)

We can define lower bounds for a type parameter in the form
class A<B extends C> { ...

o It makes no real sense to define an upper bound U for a class type
parameter, as this would mean that we can store anything super U in

there, starting of 0Object

e But sometimes, in type-parameterized methods, we may need do deal
with this range

e Also, sometimes, we may not really care about the actual type of a
parameter, as long as it obeys a certain lower bound

e In both cases, we can use the wildcard ? (which is not to be confused
with the ternary operator from Lesson 5: Operators Expressions)

OOP with Java Thomas Weise 27/38

An example for wildcards for generic types

AQ!

Listi n example for wildcards for generic types

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericPair;

public class GenericsAndStaticFunctionsWildcards {

static <K, V> GenericPair<K, V> copyPair(final GenericPair<? extends K, ? extends V> pair) {
return new GenmericPair<>(pair.key, pair.getValue());

}

static <K, V> boolean isSame(GenericPair<K, V> pairl, GenmericPair<? super K, ? super V> pair2) {

return ((pairi.key

¥

pair2.key) && (pairl.getValue() == pair2.getValue()));

public static void main(String[] args) {
GenericPair<String, String> stringPair = new GenericPair<>("Hello", "World!");

System.out.println(stringPair.key);
System.out.println(stringPair.getValue());

GenericPair<String, Integer> stringIntegerPair = new GenericPair<>("int", new Integer(3));
System.out.println(stringIntegerPair.key);
System.out.println(stringIntegerPair.getValue());

GenericPair<String, Object> stringObjectPairl = copyPair(stringIntegerPair);
GenericPair<String, Object> stringObjectPair2 = copyPair (stringPair)
System.out.println(isSame(stringPair, stringPair));

System.out.println(isSame(stringPair, stringObjectPair1));
System.out.println(isSame(stringPair, stringObjectPair2));

} OOP with Java Thomas Weise

28/38

e We cannot instantiate generic type parameters

e We cannot instantiate generic type parameters

e Now here it gets a bit tricky, listen up

e We cannot instantiate generic type parameters

e Now here it gets a bit tricky, listen up

e Assume we have a class or function with the generic parameter T

e We cannot instantiate generic type parameters

Now here it gets a bit tricky, listen up

e Assume we have a class or function with the generic parameter T

Inside this class or method, we cannot do T x = new TQ;

e We cannot instantiate generic type parameters

Now here it gets a bit tricky, listen up

e Assume we have a class or function with the generic parameter T

Inside this class or method, we cannot do T x = new TQ;
Why?

e We cannot instantiate generic type parameters

Now here it gets a bit tricky, listen up

e Assume we have a class or function with the generic parameter T

Inside this class or method, we cannot do T x = new TQ;

Why? Because of erasure.

e Generic parameters actually only exist until the compiler has
processed your code

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic. . .)

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic. . .)

e What does this mean?

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic. . .)

e What does this mean?

e It means that the compiler removes all generic parameters

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic. . .)

e What does this mean?

e |t means that the compiler removes all generic parameters, i.e.,

o replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

Erasure §\

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic...)

e What does this mean?

e It means that the compiler removes all generic parameters, i.e.,

e replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

e inserts type casts if necessary to preserve type safety

OOP with Java Thomas Weise 30/38

Erasure §\

1AQ

e Generic parameters actually only exist until the compiler has
processed your code

e They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic...)

e What does this mean?

e It means that the compiler removes all generic parameters, i.e.,

e replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

e inserts type casts if necessary to preserve type safety

e If you would do something like T a = new T() , your machine code
would not have any idea what class T actually is

OOP with Java Thomas Weise 30/38

Erasure §\

Generic parameters actually only exist until the compiler has
processed your code

They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic...)
What does this mean?

It means that the compiler removes all generic parameters, i.e.,

e replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

e inserts type casts if necessary to preserve type safety

If you would do something like T a = new T() , your machine code
would not have any idea what class T actually is

So it could not allocate an instance of the right type

OOP with Java Thomas Weise 30/38

Erasure §\

Generic parameters actually only exist until the compiler has
processed your code

They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic...)
What does this mean?

It means that the compiler removes all generic parameters, i.e.,

e replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

e inserts type casts if necessary to preserve type safety

If you would do something like T a = new T() , your machine code
would not have any idea what class T actually is

So it could not allocate an instance of the right type

It cannot even be guaranteed that a parameter-less constructor of
form T() exists in the type actually used for T

OOP with Java Thomas Weise 30/38

Erasure §\

Generic parameters actually only exist until the compiler has
processed your code

They do not exist in the produced machine code (well, in the
reflection information they exist, but this is another topic...)
What does this mean?

It means that the compiler removes all generic parameters, i.e.,

e replaces all type parameters in generic types with their bounds or
Object if the type parameters are unbounded

e inserts type casts if necessary to preserve type safety

If you would do something like T a = new T() , your machine code
would not have any idea what class T actually is

So it could not allocate an instance of the right type

It cannot even be guaranteed that a parameter-less constructor of
form T() exists in the type actually used for T

And thus, this is not allowed

OOP with Java Thomas Weise 30/38

e In the “Generic Map” example, it implicitly became clear that we can
also use generics in arrays

Example for generic static method with generic array

Listing: Example for generic static met

package cn.edu.hfuu.iao;

public class GenericsStaticFunctionsAndArrays {

static <T> T replaceAndGet01ld (T[] array, int index, final T replace) {

T old = array[index];
array[index] = replace;
return old;

}

public static void main(String[] args) {
String[] 1list = {"Hello,", "World,,",
nitis,", "me."};

for (String s : list) { System.out.print(s); }
System.out.println();

String old = replaceAndGet0ld(list, 3, "someonejelse.");
System.out.println(old);

for (String s : list) { System.out.print(s); }
System.out.println();

OOP with Java Thomas Weise

32/38

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

e In the "Generic Map” example, it implicitly became clear that we can

also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder

e In the "Generic Map” example, it implicitly became clear that we can

also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder
e Assume we have a class or function with the generic parameter T

e In the "Generic Map” example, it implicitly became clear that we can

also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder
e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based

on generic type T

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder
e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T
e We can do void m(T[] a, T v){ al1] = v; }

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

e When dealing with generic arrays, erasure will make our life a bit
harder

e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based

on generic type T
e We can do void m(T[] a, T v){ al1] = v; }
e Wecando T n(T[] a){ return a[0]; }

Generic Arrays and Erasure %\’

1AQ

2
.

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

e When dealing with generic arrays, erasure will make our life a bit
harder

e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T

e We can do void m(T[] a, T v){ al1] = v; }

e Wecando T n(T[] a){ return a[0]; }

e We can do void o(T[] a){ T[] z = a; m(z, n(z)); }

OOP with Java Thomas Weise 33/38

Generic Arrays and Erasure

1AQ

D

2
.

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

e When dealing with generic arrays, erasure will make our life a bit
harder

e Assume we have a class or function with the generic parameter T

We can declare and use something like T[] , i.e., a generic array based
on generic type T

We can do void m(T[] a, T v){ al[1] = v; }

We can do T n(T[] a){ return a[0]; }

We can do void o(T[] a){ T[] z = a; m(z, n(z)); }

But we cannot do T[] p(int i){ return new T[il; }

OOP with Java Thomas Weise 33/38

Generic Arrays and Erasure %0’

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder
e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T

e We can do void m(T[] a, T v){ al1] = v; }

e Wecando T n(T[] a){ return a[0]; }

e We can do void o(T[] a){ T[] z = a; m(z, n(z)); }

e But we cannot do T[] p(int i){ return new T[il; }

e And we also can never do T x = new TQ;

OOP with Java Thomas Weise 33/38

Generic Arrays and Erasure %0’

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays
e When dealing with generic arrays, erasure will make our life a bit

harder
e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T

e We can do void m(T[] a, T v){ al1] = v; }

e Wecando T n(T[] a){ return a[0]; }

e We can do void o(T[] a){ T[] z = a; m(z, n(z)); }

e But we cannot do T[] p(int i){ return new T[il; }

e And we also can never do T x = new TQ;

o Why?

OOP with Java Thomas Weise 33/38

Generic Arrays and Erasure %()

e In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

e When dealing with generic arrays, erasure will make our life a bit
harder

e Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T
e We can do void m(T[] a, T v){ al1] = v; }
e Wecando T n(T[] a){ return a[0]; }
e We can do void o(T[] a){ T[] z = a; m(z, n(z)); }
e But we cannot do T[] p(int i){ return new T[il; }
e And we also can never do T x = new TQ;
o Why? Because of erasure, that's why.
e |f you would do something like T[] a = new T[3] , your machine code
would not have any idea what class T actually is

OOP with Java Thomas Weise 33/38

Generic Arrays and Erasure %()

In the "Generic Map” example, it implicitly became clear that we can
also use generics in arrays

When dealing with generic arrays, erasure will make our life a bit
harder

Assume we have a class or function with the generic parameter T

e We can declare and use something like T[] , i.e., a generic array based
on generic type T
e We can do void m(T[] a, T v){ al1] = v; }
e Wecando T n(T[] a){ return a[0]; }
e We can do void o(T[] a){ T[] z = a; m(z, n(z)); }
e But we cannot do T[] p(int i){ return new T[il; }
e And we also can never do T x = new TQ;
Why? Because of erasure, that's why.
If you would do something like T[] a = new T[3] , your machine code
would not have any idea what class T actually is
So it could not allocate an array of the right type

OOP with Java Thomas Weise 33/38

e Actually, you already saw this, but let us explicitly mention again:
You can subclass generic types

e Actually, you already saw this, but let us explicitly mention again:
You can subclass generic types

e If you want, you can specify the generic parameters for the subclass

Example for a subclass of GenericPair %\’

Listing: Example for a subclass of GenericPair

package cn.edu.hfuu.iao.collections;

public class StringValuedPair<K> extends GenericPair<K, String> {

public StringValuedPair(final K _key, final String _value) {

super (_key, _value);
¥
@Override
public String getValue() {
return '\'' + super.getValue() + '\'';
¥
¥

OOP with Java Thomas Weise 35/38

Example for using the new String-valued Pair %\’

1AQ

Listing: Example for using the new String-valued Pair

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.GenericPair;
import cn.edu.hfuu.iao.collections.StringValuedPair;

public class StringValuedPairTest {

public static void main(Stringl[]l args) {
GenericPair<String,String> stringPair =
new StringValuedPair<String>("Hello",
"World!");

System.out.println(stringPair.key);
System.out.println(stringPair.getValue());
}

OOP with Java Thomas Weise 36/38

Summary %\

Generics allow us to specify placeholders for types in a class
implementation

When instantiating the class, we then determine the actual types

This provides additional type safety while allowing us to implement
and use very general base classes that apply to arbitrary types

And it reduces the number of explicit type casts we need to do
Generics can also be applied to methods

We can define lower bounds for generic type parameters via

<T extends MyObject>

We can use wildcards ? for generic type parameters

We have learned what erasure is and that we cannot instantiate
generic parameters or arrays thereof.

OOP with Java Thomas Weise 37/38

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Introduction
	A class for holding a pair of objects
	A use case for the class for holding a pair of objects
	The Problem

	Generics
	Generics
	A generic class for holding a pair of objects
	Javadoc
	A use case for the generic class for holding a pair of objects
	A use case for a generic object holding a generic object
	Advantages
	A more elaborate example
	A non-generic/Object-based Map Class
	Example for Using our non-generic/Object-based Map
	A Generic Map Class
	Example for Using our Generic Map

	Methods with Generic Parameters
	Methods with Generic Parameters
	Example for methods with generic parameters

	Bounds for Type Parameters
	Lower Bounds for Type Parameters
	A base class for our example
	The first subclass for our example
	The second subclass for our example
	The generic container for two printables (with lower bound)
	An example for instantiating with lower-bound generic types
	Upper Bounds and Wildcards for Type Parameters
	An example for wildcards for generic types

	Erasure
	We Cannot Instantiate Generic Parameters!
	Erasure

	Generic Arrays
	Generic Arrays
	Example for generic static method with generic array
	Generic Arrays and Erasure

	Inheritance and Generics
	Inheritance and Generics
	Example for a subclass of GenericPair
	Example for using the new String-valued Pair

	Summary
	Summary

	Presentation End

