LR B

HEFEI UNIVERSITY

OOP with Java

14. Objects, Instance Variables, and New

Thomas Weise -
- http://iao.hfuu.edu.cn

tweise@hfuu.edu.cn

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE

SR miE AR R /@2 R
THEMAZERARZ

R R AR ACET 5 BT

T E KA /\m?‘r . 230601
ZFHEARATER 4% KiE995

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Creating Objects

@ Object Variables and Lifecylce
@ Objects in Expressions

@ Arrays of Objects

@ static vs. instance variables

@ Summary

OOP with Java Thomas Weise

e We now can create variables of primitive types (like int), of strings,
and arrays of them

e We now can create variables of primitive types (like int), of strings,
and arrays of them

e Sometimes, we want more complex data structures, we want to
combine several variables to a group

e We now can create variables of primitive types (like int), of strings,
and arrays of them

e Sometimes, we want more complex data structures, we want to
combine several variables to a group

e We can do this with classes, objects, and instance variables

e A class is a structured data type

e A class is a structured data type

e An object is a concrete instance of a class

A class is a structured data type

An object is a concrete instance of a class (like int j creates the
instance j of the type int)

Classes define instance variables

A class is a structured data type

An object is a concrete instance of a class (like int j creates the
instance j of the type int)

Classes define instance variables

Each instance of a class has one set of these instance variables

A class is a structured data type

An object is a concrete instance of a class (like int j creates the
instance j of the type int)

Classes define instance variables

Each instance of a class has one set of these instance variables

We can have multiple, independent instances of the same class

e A class is a structured data type

e An object is a concrete instance of a class (like int j creates the
instance j of the type int)

e Classes define instance variables

e Each instance of a class has one set of these instance variables

e We can have multiple, independent instances of the same class

e Classes are instantiated with the keywork new followed by the class
name and parentheses

Terminology %\

e A class is a structured data type

e An object is a concrete instance of a class (like int j creates the
instance j of the type int)

e Classes define instance variables
e Each instance of a class has one set of these instance variables
e We can have multiple, independent instances of the same class

e Classes are instantiated with the keywork new followed by the class
name and parentheses

e (Actually, you have already seen this when creating arrays. Arrays are
special objects and so are Strings.)

OOP with Java Thomas Weise 4/25

A Class to Represent a Person %\,

1AQ

Listi A Class to Represent a Person

public class Person {

String familyName;

String givenName;

public static final void main(String([] args) {

Person weise = new Person();
weise.familyName = "Weise
weise.givenName = "Thomas";
Person chan = new Person()

chan.givenName =
chan.familyName

System.out.println(weise.givenName) ;
System.out.println(weise.familyName);

System.out.println(chan.familyName) ;
System.out.println(chan.givenName) ;

OOP with Java Thomas Weise 5/25

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

Constructors %()

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

e A constructor is a special method with the same name as the class

OOP with Java Thomas Weise 6/25

Constructors %()

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

e A constructor is a special method with the same name as the class

e It can have parameters like a normal method, but has no return value

OOP with Java Thomas Weise 6/25

Constructors %D

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

e A constructor is a special method with the same name as the class
e It can have parameters like a normal method, but has no return value

o It will be executed when creating an instance and you will then
provide the parameters in the new statement

OOP with Java Thomas Weise 6/25

Constructors %D

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

e A constructor is a special method with the same name as the class
e It can have parameters like a normal method, but has no return value

o It will be executed when creating an instance and you will then
provide the parameters in the new statement

e You can have multiple constructors in class, but they then need to
take parameters of different types

OOP with Java Thomas Weise 6/25

Constructors %D

e When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

e In the previous example, we did not specify one, so the object is just
created and no special action is taken

e But we can add some special actions that should be performed upon
creation by specifying a constructor

e A constructor is a special method with the same name as the class
e It can have parameters like a normal method, but has no return value

o It will be executed when creating an instance and you will then
provide the parameters in the new statement

e You can have multiple constructors in class, but they then need to
take parameters of different types

e One constructor can invoke another one as its very first command,
like a function

OOP with Java Thomas Weise 6/25

e Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

e Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

o If we want to read the instance variable bla of the current object

from its constructor, we can use this.bla

e Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

o If we want to read the instance variable bla of the current object
from its constructor, we can use this.bla

e Setting the instance variable bla to the value of expression blubb
goes via this.bla = blubb;

A Class with Constructor to Represent a Person %0’

to Represent a Perso

public class PersonWithConstructor {

String familyName;

String givenName;

PersonWithConstructor (String _familyName, String _givenName) {
this.familyName = _familyName;
this.givenName = _givenName;

public static final void main(String[] args) {

PersonWithConstructor weise = new PersonWithConstructor (
"Weise", "Thomas");

PersonWithConstructor chan = new PersonWithConstructor(
"Chan", "Jacky");

System.out.println(weise.givenName);
System.out.println(weise.familyName);

System.out.println(chan.familyName);
System.out.println(chan.givenName);

OOP with Java Thomas Weise 8/25

e There is a difference between an object and a reference

e There is a difference between an object and a reference

e Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

e There is a difference between an object and a reference

e Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

o A variable of (class) type Person is not the object itself

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

Objects and References §\

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

If we do Person A = new Person() ; and then Person B = A;

OOP with Java Thomas Weise 9/25

Objects and References §\

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

If we do Person A = new Person() ; and then Person B = 4; ,

e A and B point to the same object

OOP with Java Thomas Weise 9/25

Objects and References §\

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

If we do Person A = new Person() ; and then Person B = 4; ,

e A and B point to the same object,
e changes to the instance variables of the object references by A also
appear in B (it is the same object!)

OOP with Java Thomas Weise 9/25

Objects and References §\

1AQ

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

If we do Person A = new Person() ; and then Person B = 4; ,

e A and B point to the same object,

e changes to the instance variables of the object references by A also
appear in B (it is the same object!), and

e changes to the instance variables of the object references by B also
appear in A (it is the same object!)

OOP with Java Thomas Weise 9/25

Objects and References §\

1AQ

There is a difference between an object and a reference

Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

A variable of (class) type Person is not the object itself

Instead, it points to the object, it is a reference, a pointer

If we do Person A = new Person() ; and then Person B = 4; ,

e A and B point to the same object,

e changes to the instance variables of the object references by A also
appear in B (it is the same object!), and

e changes to the instance variables of the object references by B also
appear in A (it is the same object!), since

e the = operator does not copy/assign objects but references!

OOP with Java Thomas Weise 9/25

e OK, so an object is created by invoking its constructor

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?

o If this was true, programs would consume more and more memory the
longer they run.

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?
o If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
... the longer the run, the more memory they would consume.

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?
o If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
... the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

Objects Lifecycle %()

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?
e If this was true, programs would consume more and more memory the
longer they run.

e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

e No. The memory occupied by objects will be freed when they are no
longer needed.

OOP with Java Thomas Weise 10/25

Objects Lifecycle §\

OK, so an object is created by invoking its constructor
And then? Do they live on forever?

e If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

e No. The memory occupied by objects will be freed when they are no
longer needed.
We do not need to worry about that

OOP with Java Thomas Weise 10/25

Objects Lifecycle §\

OK, so an object is created by invoking its constructor
And then? Do they live on forever?

e If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

e No. The memory occupied by objects will be freed when they are no
longer needed.
We do not need to worry about that:

e In Java, a Garbage Collector (GC) is sometimes automatically executed
in the background.

OOP with Java Thomas Weise 10/25

Objects Lifecycle §\

1AQ

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?

e If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

e No. The memory occupied by objects will be freed when they are no
longer needed.
e We do not need to worry about that:

e In Java, a Garbage Collector (GC) is sometimes automatically executed
in the background.
e It frees objects which are no longer referenced.

OOP with Java Thomas Weise 10/25

Objects Lifecycle §\

1AQ

e OK, so an object is created by invoking its constructor
e And then? Do they live on forever?
e If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.
e No. The memory occupied by objects will be freed when they are no
longer needed.
e We do not need to worry about that:
e In Java, a Garbage Collector (GC) is sometimes automatically executed
in the background.
e It frees objects which are no longer referenced.

e It runs from time to time and not always frees all disposable objects at
once (to be time-efficient).

OOP with Java Thomas Weise 10/25

Objects Lifecycle §\

1AQ

e OK, so an object is created by invoking its constructor
And then? Do they live on forever?
e If this was true, programs would consume more and more memory the
longer they run.
e Think web server programs accepting connections from web browsers
. the longer the run, the more memory they would consume.
e Eventually, they would crash because all available memory was used.

e No. The memory occupied by objects will be freed when they are no
longer needed.
We do not need to worry about that:
e In Java, a Garbage Collector (GC) is sometimes automatically executed
in the background.
e It frees objects which are no longer referenced.
e It runs from time to time and not always frees all disposable objects at
once (to be time-efficient).

If an object is created in a method and no reference to it is returned,
it also becomes subject to disposal when the method returns.

OOP with Java Thomas Weise 10/25

Using Objects: Allocation, Assignment, Disposal

Using Objects: Allocation, Assignment, Disposal

public class PersonWithConstructorUsage {

public static final void main(Stringl[] args) {
PersonWithConstructor weise = new PersonWithConstructor("Weise", "Thomas");
PersonWithConstructor chan = new PersonWithComstructor("Chan", "Jacky");

System.out.println(weise.givenName);
System.out.println(weise.familyName);

weise.givenName = chan.givenName;
System.out.println(weise.givenName);
System.out.println(weise.fanilyName);

chan.givenName = "Kong-sang";
System.out.println(weise.givenName);
System.out.println(chan.givenName);

weise = chan;

System.out.println(weise.givenName);
System.out.println(weise.familyName);

chan.givenName = "Jacky";
System.out.println(chan.givenName);
System.out.println(weise.givenName);

chan = weise;
System.out.println(chan.familyName);
System.out.println(chan.givenName);

OOP with Java Thomas Weise 11/25

o (Object) variables point to objects

o (Object) variables point to objects

o If we want that a variable v points no longer to any object, we set it
to null, i.e., v=null

o (Object) variables point to objects

o If we want that a variable v points no longer to any object, we set it
to null, i.e., v=null

e We can compare values with null , i.e., do if(v == null) to see if
v points to any object

(Object) variables point to objects

If we want that a variable v points no longer to any object, we set it
to null, i.e., v=null

We can compare values with null , i.e., do if(v == null) to see if
v points to any object

In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to nuill

The Special Constant nu11 §\

(Object) variables point to objects

If we want that a variable v points no longer to any object, we set it
to null , I.e., v=null

We can compare values with null , i.e., do if(v == null) to see if
v points to any object

In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to nul1l

Obviously, an expression/variable with value null does not point to
any object and you cannot access the instance variables of that. ..

OOP with Java Thomas Weise 12/25

The Special Constant nu11 §\

(Object) variables point to objects

If we want that a variable v points no longer to any object, we set it
to null, i.e., v=null

We can compare values with null , i.e., do if(v == null) to see if
v points to any object

In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to nul1l

Obviously, an expression/variable with value null does not point to
any object and you cannot access the instance variables of that. ..
...In lesson Lesson 25: Exceptions, we will learn what happens if you
try to do that anyway.

OOP with Java Thomas Weise 12/25

public class PersonWithConstructorUsageNull {

public static final void main(String[) args) {
PersonWithConstructor weise = new PersonWithComstructor("Weise", "Thomas");
PersonWithConstructor chan = new PersonWithComstructor("Chan", "Jacky");

System.out.println(weise.givenName);
System.out.println(weise.familyName);

weise.givenName = chan.givenName;
System.out.println(weise.givenName);
System.out.println(weise.familyName);

chan.givenName = "Kong-sang";
System.out.println(weise.givenName);
System.out.println(chan.givenName);

weise = chan;
System.out.println(weise.givenName);
System.out.printin(weise.familyName);

chan.givenName = "Jacky";
System.out.println(chan.givenName);
System.out.println(weise.givenName);

chan = weise;
System.out.println(chan.familyName);
System.out.println(chan.givenName);

chan = null;
System.out.println(veise.givenName);

System.out.printin(weise.familyName);

weise.givenName = null;
System.out.printin(weise.givenName);

weise = null;

Y OOP with Java Thomas Weise 13/25

e When creating a new class, we have created a new type

e When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

e When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

e We can have variables of the type and assign values to them

When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

We can have variables of the type and assign values to them

We can have expressions returning an instance of the type

When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

We can have variables of the type and assign values to them

e We can use the type for parameters of methods

We can have expressions returning an instance of the type

When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

We can have variables of the type and assign values to them

We can have expressions returning an instance of the type

e We can use the type for parameters of methods

e We can use it also as return type for functions

When creating a new class, we have created a new type

e We can use this type as if it was a “native” Java type

We can have variables of the type and assign values to them

We can have expressions returning an instance of the type
e We can use the type for parameters of methods

e We can use it also as return type for functions

Let us explore this power with a slightly larger example

Listi

/** a

public class ComplexNumber {

representing a
ing a

double realPart; /
double imaginaryPart;

ooy @ . .
pub11c ComplexNumber () {
I

this ();
this.realPart = _realPart;

}

the

setting both T

public ComplexNumber (final double _realPart, final double _imaginaryPart) {

maginary part

this(_realPart); first invoke the ome-parameter co uctor setting real part
this.imaginaryPart = _imaginaryPart;
}
}
V.
OOP with Java Thomas Weise 15/25

A class implementing mathematical operations over C

Listi A class implementing mathematical operations over C

public class ComplexNumberCalculator {

static ComplexNumber add(ComplexNumber x, ComplexNumber y) {
return new ComplexNumber ((x.realPart + y.realPart), (x.imaginaryPart + y.imaginaryPart));

}

static ComplexNumber subtract(ComplexNumber x, ComplexNumber y) {
return new ComplexNumber (
(x.realPart - y.realPart),
(x.imaginaryPart - y.imaginaryPart));

static ComplexNumber multiply(ComplexNumber x, ComplexNumber y) {
double al = x.realPart, bl = x.imaginaryPart;
double a2 = y.realPart, b2 = y.imaginaryPart;

return new ComplexNumber (((al * a2) - (bl * b2)),
((al % b2) + (b1 * a2)));

static ComplexNumber divide(ComplexNumber x, ComplexNumber y) {
double al = x.realPart, bl = x.imaginaryPart;
double a2 = y.realPart, b2 = y.imaginaryPart;

return new ComplexNumber ((((al * a2) + (b1l * b2)) / ((a2 * a2) + (b2 * b2))),
(((a2 * b1) - (b2 = al)) / ((a2 * a2) + (b2 * b2))));

static void println(ComplexNumber x) {
System.out.print(x.realPart);
System.out.print (", +,");
System.out.print (x.imaginaryPart);
System.out.println('i');

OOP with Java Thomas Weise 16/25

A class testing these mathematical operations

=

A class testing these mathematical operations

public class ComplexNumberTest {

public static final void main(String[] args) {
ComplexNumber a, b, res;

ComplexNumberCalculator.println(

a = new ComplexNumber (20d));
ComplexNumberCalculator.println(

b = new ComplexNumber (1d, -2d));

ComplexNumberCalculator.println(

res = ComplexNumberCalculator.subtract (ComplexNumberCalculator.multiply(a, b),

ComplexNumberCalculator.println(
ComplexNumberCalculator.divide (res, b));

ComplexNumberCalculator.println(
ComplexNumberCalculator.divide (
ComplexNumberCalculator.multiply (res, res),
ComplexNumberCalculator.multiply (res, new ComplexNumber (1d, -1d))));

b))

OOP with Java Thomas Weise

17/25

e When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

e When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

e Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

e When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

e Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

e We distinguish same and equal

e When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

e Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

e We distinguish same and equal:

e Two cars of the same brand, color, and with identical specification may
be equal

Objects Identity %\’

1AQ

e When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

e Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object
e We distinguish same and equal:

e Two cars of the same brand, color, and with identical specification may
be equal

e Yet, they may belong to two different people, i.e., they are not the
same

OOP with Java Thomas Weise 18/25

Objects Identity §\

When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references

Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object
We distinguish same and equal:

e Two cars of the same brand, color, and with identical specification may
be equal

e Yet, they may belong to two different people, i.e., they are not the
same

Two objects may have the same field values, but the two objects are
located at different places in memory.

OOP with Java Thomas Weise 18/25

Objects Identity §\

When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references
Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object
We distinguish same and equal:
e Two cars of the same brand, color, and with identical specification may
be equal
e Yet, they may belong to two different people, i.e., they are not the
same
Two objects may have the same field values, but the two objects are
located at different places in memory.

They can be equal, but they are not the same

OOP with Java Thomas Weise 18/25

Objects Identity §\

When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references
Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object
We distinguish same and equal:

e Two cars of the same brand, color, and with identical specification may
be equal

e Yet, they may belong to two different people, i.e., they are not the
same

Two objects may have the same field values, but the two objects are
located at different places in memory.

They can be equal, but they are not the same

== return true only if two variables are the same

OOP with Java Thomas Weise 18/25

Objects Identity §\

When comparing object variables/expressions using ==, we do not
compare the values of the object variables but only the references
Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object
We distinguish same and equal:

e Two cars of the same brand, color, and with identical specification may
be equal

e Yet, they may belong to two different people, i.e., they are not the
same

Two objects may have the same field values, but the two objects are
located at different places in memory.

They can be equal, but they are not the same
== return true only if two variables are the same

Iff two variables point to the same object, == returns true

OOP with Java Thomas Weise 18/25

A class testing object identity via

public class IdentityTest {

public static void main(String[] args) {

PersonWithConstructor personA = new PersonWithConstructor ("Weise",
System.out.println(personA.familyName + 'i,' + personA.givenName);

PersonWithConstructor personB = new PersonWithConstructor ("Weise",

System.out.println(personB.familyName + ',,' + personB.givenName);
System.out.println(personA == personB);

personB = personA;

System.out.println(personA == personB);

ComplexNumber ci = new ComplexNumber (0d);
ComplexNumber c2 = new ComplexNumber (0d, 0d);

System.out.println(cl == c2);
System.out.println((cl = c2)

"Thomas") ;

"Thomas") ;

OOP with Java Thomas Weise

19/25

e We can create arrays of objects, in the same way we did before with
primitive types

Arrays of Objects x\,

1AQ

e We can create arrays of objects, in the same way we did before with
primitive types

Listing: An array of PersonWithConstructor objects

public class PersonWithConstructorArray {

public static final void main(String[] args) {

PersonWithConstructor [] array = {
new PersonWithConstructor("Weise", "Thomas"),
new PersonWithConstructor ("Chan", "Jacky"),
new PersonWithConstructor("Onegin", "Eugene"),

};

for (PersonWithConstructor element : array) {

System.out.println(element.familyName) ;

OOP with Java Thomas Weise 20/25

e Just a quick example for using null and a test for null in an array

Using nui1 In Code

e Just a quick example for using null and a test for null in an array

array of PersonWithConstructor objects wi

public class PersonWithConstructorArrayWithNull {

public static final void main(String[] args) {

PersonWithConstructor [] array = {
new PersonWithConstructor ("Weise", "Thomas"),
new PersonWithConstructor ("Chan", "Jacky"),
null,
new PersonWithConstructor ("Onegin", "Eugene"),
};
for (PersonWithConstructor element : array) {
if (element != null) {
System.out.println(element.familyName) ;
} else {

System.out.println("Missing element!");

OOP with Java Thomas Weise

21/25

e |n Lesson 12: Static Variables, we learned about static variables

e |n Lesson 12: Static Variables, we learned about static variables

e static variables are different from instance variables

e |n Lesson 12: Static Variables, we learned about static variables

e static variables are different from instance variables

e A static variable exists “once per class”

In Lesson 12: Static Variables, we learned about static variables

e static variables are different from instance variables

e A static variable exists “once per class”

An instance variable exists “once per object”

Using static and instance variables

Listi A program usi and instance variables

public class PersonWithIDStatic {

static int idCounter = 0;

String familyName;

String givenName;

int id;

PersonWithIDStatic(String _familyName, String _givenName) {
this.familyName = _familyName;

this.givenName = _givenName;
this.id = (++PersonWithIDStatic.idCounter);

public static final void main(String[] args) {
System.out.println(idCounter);
PersonWithIDStatic weise = new PersonWithIDStatic("Weise', "Thomas");
System.out.println(idCounter);
PersonWithIDStatic chan = mew PersonWithIDStatic("Chan", "Jacky');

System.out.println(weise.givenName);
System.out.println(weise.familyName);
System.out.println(weise.id);
System.out.println(idCounter);

System.out.println(chan.familyName);
System.out.println(chan.givenName);
System.out.println(chan.id);
System.out.println(weise.id);
System.out.println(idCounter);

QOP with Java Thomas Weise 23/25 4

e We have learned about objects, i.e., instances of classes

e We have learned about objects, i.e., instances of classes

e They can have instance variables

e We have learned about objects, i.e., instances of classes

e They can have instance variables

e They can have (multiple) constructors

We have learned about objects, i.e., instances of classes

They can have instance variables

They can have (multiple) constructors

We have learned what this and null are

We have learned about objects, i.e., instances of classes

They can have instance variables

They can have (multiple) constructors

We have learned what this and null are

We have learned what references are and how = actually copies a
reference, not an object

We have learned about objects, i.e., instances of classes

They can have instance variables
They can have (multiple) constructors
We have learned what this and null are

We have learned what references are and how = actually copies a
reference, not an object

We have learned how we can pass as parameters to and return values
from methods

Summary

”

>
<

e We have learned about objects, i.e., instances of classes
e They can have instance variables

e They can have (multiple) constructors

e We have learned what this and null are

e We have learned what references are and how = actually copies a
reference, not an object

e We have learned how we can pass as parameters to and return values
from methods

e We have discussed the life cycle of an object and what garbage
collection is

OOP with Java Thomas Weise 24/25

Summary %\

1AQ

e We have learned about objects, i.e., instances of classes
e They can have instance variables

e They can have (multiple) constructors

e We have learned what this and null are

e We have learned what references are and how = actually copies a
reference, not an object

e We have learned how we can pass as parameters to and return values
from methods

e We have discussed the life cycle of an object and what garbage
collection is

e We have learned that all java arrays and strings are actually objects,
too

OOP with Java Thomas Weise 24/25

Summary %\

We have learned about objects, i.e., instances of classes
They can have instance variables

They can have (multiple) constructors

We have learned what this and null are

We have learned what references are and how = actually copies a
reference, not an object

We have learned how we can pass as parameters to and return values
from methods

We have discussed the life cycle of an object and what garbage
collection is

We have learned that all java arrays and strings are actually objects,
too

And we have learned that we can have arrays of objects

OOP with Java Thomas Weise 24/25

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Terminology

	Creating Objects
	A Class to Represent a Person
	Constructors
	The Special Variable this
	A Class with Constructor to Represent a Person

	Object Variables and Lifecylce
	Objects and References
	Objects Lifecycle
	Using Objects: Allocation, Assignment, Disposal
	The Special Constant null
	Using Objects: Allocation, Assignment, Disposal, and null

	Objects in Expressions
	Objects in Expressions
	A class for representing complex numbers, i.e., C
	A class implementing mathematical operations over C
	A class testing these mathematical operations
	Objects Identity
	A class testing object identity via ==

	Arrays of Objects
	Arrays of Objects
	Using null In Code

	static vs. instance variables
	static vs. instance variables
	Using static and instance variables

	Summary
	Summary

	Presentation End

