
OOP with Java
14. Objects, Instance Variables, and New

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Creating Objects

3 Object Variables and Lifecylce

4 Objects in Expressions

5 Arrays of Objects

6 static vs. instance variables

7 Summary

OOP with Java Thomas Weise 2/25

w
e
b
s
it
e

Introduction

• We now can create variables of primitive types (like int), of strings,
and arrays of them

OOP with Java Thomas Weise 3/25

Introduction

• We now can create variables of primitive types (like int), of strings,
and arrays of them

• Sometimes, we want more complex data structures, we want to
combine several variables to a group

OOP with Java Thomas Weise 3/25

Introduction

• We now can create variables of primitive types (like int), of strings,
and arrays of them

• Sometimes, we want more complex data structures, we want to
combine several variables to a group

• We can do this with classes, objects, and instance variables

OOP with Java Thomas Weise 3/25

Terminology

• A class is a structured data type

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class (like int j creates the

instance j of the type int)

• Classes define instance variables

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class (like int j creates the

instance j of the type int)

• Classes define instance variables

• Each instance of a class has one set of these instance variables

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class (like int j creates the

instance j of the type int)

• Classes define instance variables

• Each instance of a class has one set of these instance variables

• We can have multiple, independent instances of the same class

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class (like int j creates the

instance j of the type int)

• Classes define instance variables

• Each instance of a class has one set of these instance variables

• We can have multiple, independent instances of the same class

• Classes are instantiated with the keywork new followed by the class
name and parentheses

OOP with Java Thomas Weise 4/25

Terminology

• A class is a structured data type

• An object is a concrete instance of a class (like int j creates the

instance j of the type int)

• Classes define instance variables

• Each instance of a class has one set of these instance variables

• We can have multiple, independent instances of the same class

• Classes are instantiated with the keywork new followed by the class
name and parentheses

• (Actually, you have already seen this when creating arrays. Arrays are
special objects and so are Strings.)

OOP with Java Thomas Weise 4/25

A Class to Represent a Person

Listing: A Class to Represent a Person

/** A class representing a person. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

Person weise = new Person (); // create person object

weise.familyName = "Weise"; // set the family name of object weise //$NON -NLS -1$

weise.givenName = "Thomas"; // set the given name of object weise //$NON -NLS -1$

Person chan = new Person (); // create person object

chan.givenName = "Jacky"; // set the given name of object chan //$NON -NLS -1$

chan.familyName = "Chan"; // set the family name of object chan //$NON -NLS -1$

System.out.println(weise.givenName); // print the givenName "Thomas" of weise

System.out.println(weise.familyName); // print the familyName "Weise" of weise

System.out.println(chan.familyName); // print the familyName "Chan" of chan

System.out.println(chan.givenName); // print the given name "Jacky" of chan

}

}

OOP with Java Thomas Weise 5/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

• A constructor is a special method with the same name as the class

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

• A constructor is a special method with the same name as the class

• It can have parameters like a normal method, but has no return value

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

• A constructor is a special method with the same name as the class

• It can have parameters like a normal method, but has no return value

• It will be executed when creating an instance and you will then
provide the parameters in the new statement

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

• A constructor is a special method with the same name as the class

• It can have parameters like a normal method, but has no return value

• It will be executed when creating an instance and you will then
provide the parameters in the new statement

• You can have multiple constructors in class, but they then need to
take parameters of different types

OOP with Java Thomas Weise 6/25

Constructors

• When creating an object of a class (called “instantiating the class”),
we actually call special method, the constructor

• In the previous example, we did not specify one, so the object is just
created and no special action is taken

• But we can add some special actions that should be performed upon
creation by specifying a constructor

• A constructor is a special method with the same name as the class

• It can have parameters like a normal method, but has no return value

• It will be executed when creating an instance and you will then
provide the parameters in the new statement

• You can have multiple constructors in class, but they then need to
take parameters of different types

• One constructor can invoke another one as its very first command,
like a function

OOP with Java Thomas Weise 6/25

The Special Variable this

• Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

OOP with Java Thomas Weise 7/25

The Special Variable this

• Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

• If we want to read the instance variable bla of the current object
from its constructor, we can use this.bla

OOP with Java Thomas Weise 7/25

The Special Variable this

• Inside an object’s constructor (and any method of the object, see
Lesson 15: Instance Methods), we can refer to the object itself via
the this keyword

• If we want to read the instance variable bla of the current object
from its constructor, we can use this.bla

• Setting the instance variable bla to the value of expression blubb

goes via this.bla = blubb;

OOP with Java Thomas Weise 7/25

A Class with Constructor to Represent a Person

Listing: A Class with Constructor to Represent a Person

/** A class representing a person. */

public class PersonWithConstructor {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

PersonWithConstructor(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** The main routine

* @param args we ignore this parameter */

public static final void main(String [] args) {

PersonWithConstructor weise = new PersonWithConstructor(// create person object by

"Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$ // calling the constructor

PersonWithConstructor chan = new PersonWithConstructor(// create person object by

"Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$ // calling the constructor

System.out.println(weise.givenName); // print the givenName of Thomas

System.out.println(weise.familyName); // print the familyName of Weise

System.out.println(chan.familyName); // print the familyName of Chan

System.out.println(chan.givenName); // print the given name of Jacky

}

}
OOP with Java Thomas Weise 8/25

Objects and References

• There is a difference between an object and a reference

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

• If we do Person A = new Person(); and then Person B = A;

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

• If we do Person A = new Person(); and then Person B = A; ,

• A and B point to the same object

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

• If we do Person A = new Person(); and then Person B = A; ,

• A and B point to the same object,

• changes to the instance variables of the object references by A also

appear in B (it is the same object!)

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

• If we do Person A = new Person(); and then Person B = A; ,

• A and B point to the same object,

• changes to the instance variables of the object references by A also

appear in B (it is the same object!), and

• changes to the instance variables of the object references by B also

appear in A (it is the same object!)

OOP with Java Thomas Weise 9/25

Objects and References

• There is a difference between an object and a reference

• Objects, such as Strings, arrays, and instances of our own classes, are
basically a chunk of memory containing the instance variables (and
some hidden management data)

• A variable of (class) type Person is not the object itself

• Instead, it points to the object, it is a reference, a pointer

• If we do Person A = new Person(); and then Person B = A; ,

• A and B point to the same object,

• changes to the instance variables of the object references by A also

appear in B (it is the same object!), and

• changes to the instance variables of the object references by B also

appear in A (it is the same object!), since
• the = operator does not copy/assign objects but references!

OOP with Java Thomas Weise 9/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

• We do not need to worry about that

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

• We do not need to worry about that:
• In Java, a Garbage Collector (GC) is sometimes automatically executed

in the background.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

• We do not need to worry about that:
• In Java, a Garbage Collector (GC) is sometimes automatically executed

in the background.
• It frees objects which are no longer referenced.

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

• We do not need to worry about that:
• In Java, a Garbage Collector (GC) is sometimes automatically executed

in the background.
• It frees objects which are no longer referenced.
• It runs from time to time and not always frees all disposable objects at

once (to be time-efficient).

OOP with Java Thomas Weise 10/25

Objects Lifecycle

• OK, so an object is created by invoking its constructor
• And then? Do they live on forever?

• If this was true, programs would consume more and more memory the
longer they run.

• Think web server programs accepting connections from web browsers
. . . the longer the run, the more memory they would consume.

• Eventually, they would crash because all available memory was used.

• No. The memory occupied by objects will be freed when they are no
longer needed.

• We do not need to worry about that:
• In Java, a Garbage Collector (GC) is sometimes automatically executed

in the background.
• It frees objects which are no longer referenced.
• It runs from time to time and not always frees all disposable objects at

once (to be time-efficient).

• If an object is created in a method and no reference to it is returned,
it also becomes subject to disposal when the method returns.

OOP with Java Thomas Weise 10/25

Using Objects: Allocation, Assignment, Disposal

Listing: Using Objects: Allocation, Assignment, Disposal

/** Using class PersonWithConstructor representing a person:

* allocation , member variable setting , null , disposal. */

public class PersonWithConstructorUsage {

/** The main routine

* @param args we ignore this parameter */

public static final void main(String [] args) {

PersonWithConstructor weise = new PersonWithConstructor("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

PersonWithConstructor chan = new PersonWithConstructor("Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(weise.givenName); // print the givenName of weise: "Thomas"

System.out.println(weise.familyName); // print the familyName of weise: "Weise"

weise.givenName = chan.givenName; // weise.givenName now points to same String object as chan.givenName

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

System.out.println(weise.familyName); // print the familyName of weise: "Weise"

chan.givenName = "Kong -sang"; // change the given name of chan , given name of weise stays unchanged //$NON -NLS -1$

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

System.out.println(chan.givenName); // print the given name of Chan: "Kong -sang"

weise = chan; // variables weise and chan now point to same object. this is NOT a copy

// the original weise object can eventually be disposed by GC, since it is no longer needed

System.out.println(weise.givenName); // print the givenName of weise: "Kong -sang"

System.out.println(weise.familyName); // print the familyName of weise: "Chan"

chan.givenName = "Jacky"; // change givenName of object pointed to by chan (and weise) //$NON -NLS -1$

System.out.println(chan.givenName); // print the givenName of chan: "Jacky"

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

chan = weise; // nothing changes , both variables still point to same object

System.out.println(chan.familyName); // print the familyName of Chan: "Chan"

System.out.println(chan.givenName); // print the given name of Chan: "Jacky"

}

}

OOP with Java Thomas Weise 11/25

The Special Constant null

• (Object) variables point to objects

OOP with Java Thomas Weise 12/25

The Special Constant null

• (Object) variables point to objects

• If we want that a variable v points no longer to any object, we set it
to null , i.e., v=null

OOP with Java Thomas Weise 12/25

The Special Constant null

• (Object) variables point to objects

• If we want that a variable v points no longer to any object, we set it
to null , i.e., v=null

• We can compare values with null , i.e., do if(v == null) to see if
v points to any object

OOP with Java Thomas Weise 12/25

The Special Constant null

• (Object) variables point to objects

• If we want that a variable v points no longer to any object, we set it
to null , i.e., v=null

• We can compare values with null , i.e., do if(v == null) to see if
v points to any object

• In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to null

OOP with Java Thomas Weise 12/25

The Special Constant null

• (Object) variables point to objects

• If we want that a variable v points no longer to any object, we set it
to null , i.e., v=null

• We can compare values with null , i.e., do if(v == null) to see if
v points to any object

• In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to null

• Obviously, an expression/variable with value null does not point to
any object and you cannot access the instance variables of that. . .

OOP with Java Thomas Weise 12/25

The Special Constant null

• (Object) variables point to objects

• If we want that a variable v points no longer to any object, we set it
to null , i.e., v=null

• We can compare values with null , i.e., do if(v == null) to see if
v points to any object

• In your programs, if you do no longer need an object, it may make
sense to set the variables referencing it explicitly to null

• Obviously, an expression/variable with value null does not point to
any object and you cannot access the instance variables of that. . .
. . . In lesson Lesson 25: Exceptions, we will learn what happens if you
try to do that anyway.

OOP with Java Thomas Weise 12/25

Using Objects: Allocation, Assignment, Disposal, and null

Listing: Using Objects: Allocation, Assignment, Disposal, and null

/** Using class PersonWithConstructor representing a person:

* allocation , member variable setting , null , disposal. */

public class PersonWithConstructorUsageNull {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

PersonWithConstructor weise = new PersonWithConstructor("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

PersonWithConstructor chan = new PersonWithConstructor("Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(weise.givenName); // print the givenName of weise: "Thomas"

System.out.println(weise.familyName); // print the familyName of weise: "Weise"

weise.givenName = chan.givenName; // weise.givenName now points to same String object as chan.givenName

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

System.out.println(weise.familyName); // print the familyName of weise: "Weise"

chan.givenName = "Kong -sang"; // change the given name of chan , given name of weise stays unchanged //$NON -NLS -1$

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

System.out.println(chan.givenName); // print the given name of Chan: "Kong -sang"

weise = chan; // variables weise and chan now point to same object. this is NOT a copy: original weise object can be disposed by GC

System.out.println(weise.givenName); // print the givenName of weise: "Kong -sang"

System.out.println(weise.familyName); // print the familyName of weise: "Chan"

chan.givenName = "Jacky"; // change givenName of object pointed to by chan (and weise) //$NON -NLS -1$

System.out.println(chan.givenName); // print the givenName of chan: "Jacky"

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

chan = weise; // nothing changes , both variables still point to same object

System.out.println(chan.familyName); // print the familyName of Chan: "Chan"

System.out.println(chan.givenName); // print the given name of Chan: "Jacky"

chan = null; // variable chan now does not point to an object anymore , but original chan object still referenced by weise

System.out.println(weise.givenName); // print the givenName of weise: "Jacky"

System.out.println(weise.familyName); // print the familyName of weise: "Chan"

weise.givenName = null; // given name of weise is now null (btw , the string "Kong -sang" can eventually be disposed by GC)

System.out.println(weise.givenName); // print the givenName of weise: null

weise = null; // variable weise now does not point to an object anymore , original chan object no longer used , will eventually be disposed

// System.out.println(weise.givenName); // this would crash: we do not point to any object

// System.out.println(weise.familyName); // this would crash: we do not point to any object

}

} OOP with Java Thomas Weise 13/25

Objects in Expressions

• When creating a new class, we have created a new type

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

• We can have variables of the type and assign values to them

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

• We can have variables of the type and assign values to them

• We can have expressions returning an instance of the type

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

• We can have variables of the type and assign values to them

• We can have expressions returning an instance of the type

• We can use the type for parameters of methods

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

• We can have variables of the type and assign values to them

• We can have expressions returning an instance of the type

• We can use the type for parameters of methods

• We can use it also as return type for functions

OOP with Java Thomas Weise 14/25

Objects in Expressions

• When creating a new class, we have created a new type

• We can use this type as if it was a “native” Java type

• We can have variables of the type and assign values to them

• We can have expressions returning an instance of the type

• We can use the type for parameters of methods

• We can use it also as return type for functions

• Let us explore this power with a slightly larger example

OOP with Java Thomas Weise 14/25

A class for representing complex numbers, i.e., C

Listing: A class for representing complex numbers, i.e., C

/** a class representing a complex number z ∈ Cin rectangular form z = α+ βi */

public class ComplexNumber {

double realPart; // the real part α of the complex number

double imaginaryPart; // the imaginary part β

/** create a new complex number , sets real and imaginary part to 0d */

public ComplexNumber () {

}

/** create a new complex number setting the real part , leaving imaginary part 0 */

public ComplexNumber(final double _realPart) {

this(); // optional: first invoke the parameterless first constructor

this.realPart = _realPart;

}

/** create a new complex number setting both real and imaginary part */

public ComplexNumber(final double _realPart , final double _imaginaryPart) {

this(_realPart); // first invoke the one -parameter constructor setting real part

this.imaginaryPart = _imaginaryPart;

}

}

OOP with Java Thomas Weise 15/25

A class implementing mathematical operations over C

Listing: A class implementing mathematical operations over C

/** a calculator for complex numbers in C */

public class ComplexNumberCalculator {

/** add two complex numbers , return new complex number with result (αx + αy) + (βx + βy)i */

static ComplexNumber add(ComplexNumber x, ComplexNumber y) {

return new ComplexNumber ((x.realPart + y.realPart), (x.imaginaryPart + y.imaginaryPart));

}

/** subtract two complex numbers (x-y), return new complex number with result (αx − αy) + (βx − βy)i */

static ComplexNumber subtract(ComplexNumber x, ComplexNumber y) {

return new ComplexNumber(//

(x.realPart - y.realPart), //

(x.imaginaryPart - y.imaginaryPart));

}

/** multiply two complex numbers (x*y), return new complex number with result (αxαy − βxβy) + (αxβy + βxαy)i */

static ComplexNumber multiply(ComplexNumber x, ComplexNumber y) {

double a1 = x.realPart , b1 = x.imaginaryPart;

double a2 = y.realPart , b2 = y.imaginaryPart;

return new ComplexNumber (((a1 * a2) - (b1 * b2)), //

((a1 * b2) + (b1 * a2)));

}

/** divide two complex numbers (x/y), return new complex number with result
αxαy+βxβy

α2
y
+β2

y

+
αyβx−βyαx

α2
y
+β2

y

i */

static ComplexNumber divide(ComplexNumber x, ComplexNumber y) {

double a1 = x.realPart , b1 = x.imaginaryPart;

double a2 = y.realPart , b2 = y.imaginaryPart;

return new ComplexNumber ((((a1 * a2) + (b1 * b2)) / ((a2 * a2) + (b2 * b2))), //

(((a2 * b1) - (b2 * a1)) / ((a2 * a2) + (b2 * b2))));

}

/** print a complex number to stdout */

static void println(ComplexNumber x) {

System.out.print(x.realPart);

System.out.print(" + "); //$NON -NLS -1$

System.out.print(x.imaginaryPart);

System.out.println('i');

}

}
OOP with Java Thomas Weise 16/25

A class testing these mathematical operations

Listing: A class testing these mathematical operations

/** testing the complex number calculator */

public class ComplexNumberTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

ComplexNumber a, b, res;

ComplexNumberCalculator.println(// print the result of...

a = new ComplexNumber (20d)); //... the construction of a real -valued complex number

ComplexNumberCalculator.println(// print the result of...

b = new ComplexNumber (1d, -2d)); //... the construction of a complex number of value 1− 2i

ComplexNumberCalculator.println(// print the result of (20 ∗ (1− 2i))− (1− 2i) = 19 ∗ (1− 2i) = 19− 38i
res = ComplexNumberCalculator.subtract(ComplexNumberCalculator.multiply(a, b), b));

ComplexNumberCalculator.println(// print the result of 19−38i
1−2i

= 19 = 19− 0i

ComplexNumberCalculator.divide(res , b));

ComplexNumberCalculator.println(// print the result of

ComplexNumberCalculator.divide(//
(19−38i)∗(19−38i)
(19−38i)∗(1−i)

= 19−38i
1−i

ComplexNumberCalculator.multiply(res , res), // = 28.5− 9.5i
ComplexNumberCalculator.multiply(res , new ComplexNumber (1d, -1d)))); // using new in expression

}

}

OOP with Java Thomas Weise 17/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal
• Yet, they may belong to two different people, i.e., they are not the

same

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal
• Yet, they may belong to two different people, i.e., they are not the

same

• Two objects may have the same field values, but the two objects are
located at different places in memory.

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal
• Yet, they may belong to two different people, i.e., they are not the

same

• Two objects may have the same field values, but the two objects are
located at different places in memory.

• They can be equal, but they are not the same

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal
• Yet, they may belong to two different people, i.e., they are not the

same

• Two objects may have the same field values, but the two objects are
located at different places in memory.

• They can be equal, but they are not the same

• == return true only if two variables are the same

OOP with Java Thomas Weise 18/25

Objects Identity

• When comparing object variables/expressions using == , we do not
compare the values of the object variables but only the references

• Two objects may have the exact same values in their fields (member
variables), but == returns false since they are not the same object

• We distinguish same and equal:
• Two cars of the same brand, color, and with identical specification may

be equal
• Yet, they may belong to two different people, i.e., they are not the

same

• Two objects may have the same field values, but the two objects are
located at different places in memory.

• They can be equal, but they are not the same

• == return true only if two variables are the same

• Iff two variables point to the same object, == returns true

OOP with Java Thomas Weise 18/25

A class testing object identity via ==

Listing: A class testing object identity via ==

/** test objects whether they are the same via == */

public class IdentityTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

PersonWithConstructor personA = new PersonWithConstructor("Weise", "Thomas"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(personA.familyName + ' ' + personA.givenName);

PersonWithConstructor personB = new PersonWithConstructor("Weise", "Thomas"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(personB.familyName + ' ' + personB.givenName);

System.out.println(personA == personB); // false: the variables hold same data , but are different objects!

personB = personA; // now personB and personA reference the same object

System.out.println(personA == personB); // true: both variables now reference the same instance

ComplexNumber c1 = new ComplexNumber (0d); // create a complex number 0 + 0i
ComplexNumber c2 = new ComplexNumber (0d, 0d); // create a complex number 0 + 0i

System.out.println(c1 == c2); // false: the two variables hold the same data , but are different objects!

System.out.println ((c1 = c2) == c2); // true: both variables now reference the same instance

}

}

OOP with Java Thomas Weise 19/25

Arrays of Objects

• We can create arrays of objects, in the same way we did before with
primitive types

OOP with Java Thomas Weise 20/25

Arrays of Objects

• We can create arrays of objects, in the same way we did before with
primitive types

Listing: An array of PersonWithConstructor objects

/** An array of instances of class PersonWithConstructor class representing a person. */

public class PersonWithConstructorArray {

/** The main routine

* @param args we ignore this parameter */

public static final void main(String [] args) {

PersonWithConstructor [] array = { // create and initialize an array

new PersonWithConstructor("Weise", "Thomas"), //$NON -NLS -1$//$NON -NLS -2$

new PersonWithConstructor("Chan", "Jacky"), //$NON -NLS -1$//$NON -NLS -2$

new PersonWithConstructor("Onegin", "Eugene"), //$NON -NLS -1$//$NON -NLS -2$

};

for (PersonWithConstructor element : array) { // fast read -only iteration

System.out.println(element.familyName);

} // Weise \n Chan \n Onegin

}

}

OOP with Java Thomas Weise 20/25

Using null In Code

• Just a quick example for using null and a test for null in an array

OOP with Java Thomas Weise 21/25

Using null In Code

• Just a quick example for using null and a test for null in an array

Listing: An array of PersonWithConstructor objects with null element

/** An array of instances of class PersonWithConstructor class representing a person. */

public class PersonWithConstructorArrayWithNull {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

PersonWithConstructor [] array = { // create and initialize an array

new PersonWithConstructor("Weise", "Thomas"), //$NON -NLS -1$//$NON -NLS -2$

new PersonWithConstructor("Chan", "Jacky"), //$NON -NLS -1$//$NON -NLS -2$

null , // nothing

new PersonWithConstructor("Onegin", "Eugene"), //$NON -NLS -1$//$NON -NLS -2$

};

for (PersonWithConstructor element : array) { // fast read -only iteration

if (element != null) { // check for null , we would get an error when trying null.familyName ...

System.out.println(element.familyName);

} else { // ok, null -> print something elese

System.out.println("Missing element!");//$NON -NLS -1$

}

} // Weise \n Chan \n Missing element! \n Onegin

}

}

OOP with Java Thomas Weise 21/25

static vs. instance variables

• In Lesson 12: Static Variables, we learned about static variables

OOP with Java Thomas Weise 22/25

static vs. instance variables

• In Lesson 12: Static Variables, we learned about static variables

• static variables are different from instance variables

OOP with Java Thomas Weise 22/25

static vs. instance variables

• In Lesson 12: Static Variables, we learned about static variables

• static variables are different from instance variables

• A static variable exists “once per class”

OOP with Java Thomas Weise 22/25

static vs. instance variables

• In Lesson 12: Static Variables, we learned about static variables

• static variables are different from instance variables

• A static variable exists “once per class”

• An instance variable exists “once per object”

OOP with Java Thomas Weise 22/25

Using static and instance variables

Listing: A program using both static and instance variables

/** A class representing a person with unique counted id. */

public class PersonWithIDStatic {

/** the static variable counting the person objects */

static int idCounter = 0;

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** the id of the person */

int id;

/** create a person record and set its name */

PersonWithIDStatic(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

this.id = (++ PersonWithIDStatic.idCounter); // increase the id counter and set the id of his object

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(idCounter); // print the id counter: 0

PersonWithIDStatic weise = new PersonWithIDStatic("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(idCounter); // print the id counter: 1

PersonWithIDStatic chan = new PersonWithIDStatic("Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(weise.givenName); // print the givenName of weise

System.out.println(weise.familyName); // print the familyName of weise

System.out.println(weise.id); // print the id of weise: 1

System.out.println(idCounter); // print the id counter: 2

System.out.println(chan.familyName); // print the familyName of Chan

System.out.println(chan.givenName); // print the given name of Chan

System.out.println(chan.id); // print the id of chan: 2

System.out.println(weise.id); // print the id of weise: 1

System.out.println(idCounter); // print the id counter: 2

}

}

OOP with Java Thomas Weise 23/25

Summary

• We have learned about objects, i.e., instances of classes

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

• We have learned what references are and how = actually copies a
reference, not an object

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

• We have learned what references are and how = actually copies a
reference, not an object

• We have learned how we can pass as parameters to and return values
from methods

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

• We have learned what references are and how = actually copies a
reference, not an object

• We have learned how we can pass as parameters to and return values
from methods

• We have discussed the life cycle of an object and what garbage
collection is

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

• We have learned what references are and how = actually copies a
reference, not an object

• We have learned how we can pass as parameters to and return values
from methods

• We have discussed the life cycle of an object and what garbage
collection is

• We have learned that all java arrays and strings are actually objects,
too

OOP with Java Thomas Weise 24/25

Summary

• We have learned about objects, i.e., instances of classes

• They can have instance variables

• They can have (multiple) constructors

• We have learned what this and null are

• We have learned what references are and how = actually copies a
reference, not an object

• We have learned how we can pass as parameters to and return values
from methods

• We have discussed the life cycle of an object and what garbage
collection is

• We have learned that all java arrays and strings are actually objects,
too

• And we have learned that we can have arrays of objects

OOP with Java Thomas Weise 24/25

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 25/25

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Terminology

	Creating Objects
	A Class to Represent a Person
	Constructors
	The Special Variable this
	A Class with Constructor to Represent a Person

	Object Variables and Lifecylce
	Objects and References
	Objects Lifecycle
	Using Objects: Allocation, Assignment, Disposal
	The Special Constant null
	Using Objects: Allocation, Assignment, Disposal, and null

	Objects in Expressions
	Objects in Expressions
	A class for representing complex numbers, i.e., C
	A class implementing mathematical operations over C
	A class testing these mathematical operations
	Objects Identity
	A class testing object identity via ==

	Arrays of Objects
	Arrays of Objects
	Using null In Code

	static vs. instance variables
	static vs. instance variables
	Using static and instance variables

	Summary
	Summary

	Presentation End

