
OOP with Java
5. Operators and Expressions

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction to Expressions

2 Integer Expressions

3 Floating Point Expressions

4 Assignment Operators and Expressions

5 Comparison Expressions

6 Boolean Expressions

7 The Ternary Operator

8 String Expressions
OOP with Java Thomas Weise 2/24

w
e
b
s
it
e

Expressions

• So far, we have assigned two things to variables

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

• The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleType]

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

• The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleType]

• A literal value of a type, say a number, is an expression

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

• The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleType]

• A literal value of a type, say a number, is an expression

• A variable itself can be used in an expression as well

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

• The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleType]

• A literal value of a type, say a number, is an expression

• A variable itself can be used in an expression as well

• The assignment itself is an expression (of the type of the assigned
variable)

OOP with Java Thomas Weise 3/24

Expressions

• So far, we have assigned two things to variables:

1 a value literal of the right (compatible) type
2 the value of another, compatible variable

• Actually, we can assign much more complex stuff, namely expressions

• The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleType]

• A literal value of a type, say a number, is an expression

• A variable itself can be used in an expression as well

• The assignment itself is an expression (of the type of the assigned
variable)

• Operators can be grouped by parentheses ()

OOP with Java Thomas Weise 3/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A|B the result of the bit-wise “or” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A|B the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A|B the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A^B the result of the bit-wise “xor” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A|B the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A^B the result of the bit-wise “xor” of A and B

~A the result of the bit-wise “not” of A

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

A+B the result of the addition of A and B , careful with overflows. . .
A-B the result of the subtraction of A and B , careful with overflows. . .
A*B the result of the multiplication of A and B , careful with overflows. . .

A/B the result of the integer division of A by B , careful result is truncated (no
fractions!). . .

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign
A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign
A<<B the result of shifting A by B bits to the left

A|B the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A^B the result of the bit-wise “xor” of A and B

~A the result of the bit-wise “not” of A

A and B are expressions of the right numerical type

• integer arithmetic is exact, i.e., ((a− b)− a) + b = 0, but since we have only 8,
16, 32, or 64 bits, the range of numbers we can represent is limited

• thus, if, e.g., a+ b is outside of the range of numbers we can represent, it will be
“wrapped back in”, i.e., we get the wrong result

OOP with Java Thomas Weise 4/24

Examples for Integer Arithmetic

Listing: A program computing with integer values.

/** Examples for integer arithmetic */

public class IntegerArithmetic {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int res; // declare int variable res

res = 5 + 4; // store 5 + 4 in variable "res"

System.out.println(res); // prints 9

res = res + 4; // store res + 4 in variable "res"

System.out.println(res); // prints 13

res = res + 4; // store res + 4 in variable "res"

System.out.println(res); // prints 17

res = 171 / res; // _integer_ divide 171 by "res" (17)

System.out.println(res); // prints 10

res = res * 7; // multiply "res" with 7

System.out.println(res); // prints 70

res = res % 8; // rest of the integer division of "res" (70) by 8

System.out.println(res); // prints 6

res = 3 * 6 + 10 - 4 * 5; // = ((3 * 6) + 10) - (4 *5)

System.out.println(res); // prints 8

res = 3 * ((6 + 10) - 4) * 5; // now with different grouping

System.out.println(res); // prints 180

}

}

OOP with Java Thomas Weise 5/24

Example for Overflow in Integer Arithmetic

Listing: A program encountering an integer overflow.

/** Examples for integer arithmetic overflow */

public class IntegerOverflow {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int res; // declare int variable res

res = 1_000_000; // store 1_000_000 in variable "res"

System.out.println(res); // prints 1000000

res = res * 1000; // store res * 1000 in variable "res" = 1_000_000_000

System.out.println(res); // prints 1000000000

res = res * 3; // store res * 3 in variable "res", should be 3_000_000_000

System.out.println(res); // prints -1294967296: res has overflown ,

// it does _not_ have value 3_000_000_000 , but

// 3_000_000_000 - Integer.MAX_VALUE + Integer.MIN_VALUE + 1

}

}

OOP with Java Thomas Weise 6/24

Example for Bit Shifting with Integers

Listing: A program performing integer bit shifting.

/** Examples for bit shifting in integer expressions */

public class IntegerBitShifting {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int res; // declare int variable res

res = 128; // store 128 = 2^7 in variable "res" (we use "^" here as power operator , not as xor ...)

System.out.println(res); // prints 128

res = res << 2; // shift res two bits to the left: get 2^(7+2) = 2^9 = 512

System.out.println(res); // prints 512, as res <<x is equivalent to res *2^x

res = res >> 3; // shift res three bits to the right: get 2^(9 -3) = 2^6 = 64

System.out.println(res); // prints 64, as res >>x is equivalent to res /(2^x)

res = 0b11000000_00000000_00000000_00000000; // store 3 << 30 in binary form in res

System.out.println(res); // prints -1073741824 (highest -order bit in the two's complement determines sign)

res = 0b11000000_00000000_00000000_00000000 >> 1; // shift -1073741824 right by 1 without touching sign

System.out.println(res); // prints -1073741824 / 2 = -536870912 , >>x is equivalent to signed div by 2^x

res = 0b11000000_00000000_00000000_00000000 >>> 1; // shift -1073741824 right by 1 and shift sign stuff too

System.out.println(res); // prints -1610612736 , 0b11000000_00000000_00000000_00000000 would be

// unsigned int 3221225472 and 3221225472/2 = 1610612736

}

}

OOP with Java Thomas Weise 7/24

Examples for Integer Bit Operators

Listing: A program working with bit operators on integer values.

/** Examples for bit operators in integer expressions */

public class IntegerBitOperators {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int res; // declare int variable res

res = 1; // store 1 in variable "res"

System.out.println(res); // prints 1

res = res | 1; // binary or with 1, result still 1

System.out.println(res); // prints 1

res = res | 8; // binary or with 8, result still 0b1001 = 9

System.out.println(res); // prints 9

res = res & 24; // binary or of res and 24, where 24 = 8 | 16

System.out.println(res); // prints 8

res = res ^ 9; // binary xor of 8 and 9, where 9 = 8 | 1, leaves 1

System.out.println(res); // prints 1

res = ~res; // binary not of 1, set all bits except the first 1

System.out.println(res); // prints -2

}

}

OOP with Java Thomas Weise 8/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 9/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .
A-B the result of the subtraction of A and B , overflows become infinity. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 9/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .
A-B the result of the subtraction of A and B , overflows become infinity. . .
A*B the result of the multiplication of A and B , overflows become infinity. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 9/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .
A-B the result of the subtraction of A and B , overflows become infinity. . .
A*B the result of the multiplication of A and B , overflows become infinity. . .

A/B the result of the integer division of A by B , overflows become infinity. . .

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 9/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .
A-B the result of the subtraction of A and B , overflows become infinity. . .
A*B the result of the multiplication of A and B , overflows become infinity. . .

A/B the result of the integer division of A by B , overflows become infinity. . .

A%B the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 9/24

Floating Point Expressions: Basic Operators

A+B the result of the addition of A and B , overflows become infinity. . .
A-B the result of the subtraction of A and B , overflows become infinity. . .
A*B the result of the multiplication of A and B , overflows become infinity. . .

A/B the result of the integer division of A by B , overflows become infinity. . .

A%B the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

• due to the limited number of bits in mantissa and exponent, floating point
arithmetic is not necessarily exact, i.e., ((a− b)− a) + b may be different from 0
sometimes

OOP with Java Thomas Weise 9/24

Examples for Floating Point Arithmetic

Listing: A program working with floating point arithmetic.

/** Examples for floating point arithmetic */

public class FloatingPointArithmetic {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

double res1 , res2; // declare double variable res1 and res2

res1 = 5d + 4.1d; // store 5 + 4.1 in variable "res1"

System.out.println(res1); // prints 9.1

res1 = res1 + 4.1d; // store res1 + 4.1d in variable "res1"

System.out.println(res1); // prints 13.2

res1 = res1 + 4.1d; // store res1 + 4.1d in variable "res1"

System.out.println(res1); // prints 17.299999999999997: double precision is limited (ca. 15 decimals)!

res2 = 171d / res1; // divide 171 by "res1" (which is almost but not exactly 17.3)

System.out.println(res2); // prints 9.884393063583817 (which is a good approximation)

res2 = res1 * res2; // multiply res1 with res2 , i.e., with 171/res1 , we get 171/(171/ res1)

System.out.println(res2); // prints 171.0, that worked well!

res2 = (171d / res1) * 17.3d; // (171d/res1)*17.3d ... res1 would ideally be 17.3, but is not

System.out.println(res2); // prints 171.00000000000003: a bit off due to limited precision

res1 = (((10d / 8d) * 8d) - 10.1d) + 0.1d; // this should be 0

System.out.println(res1); // prints 3.608224830031759E-16: limited precision (about 15 decimal places !)

res1 = ((10.7d - 0.12d) - 10.7d + 0.12d); // this should be 0

System.out.println(res1); // prints 7.771561172376096E-16: limited precision (about 15 decimal places !)

res1 = (8.5d % 4.1d); // compute the rest of the integer division of 8.5 and 4.1

System.out.println(res1); // should be about (8.5 -(2*4.1))=0.3, is 0.3000000000000007

}

}

OOP with Java Thomas Weise 10/24

Example: Vertical Ball Throw

• Assume a x0 = 1.8m tall person throws a ball vertically upwards into
the air with v0 = 10m/s initial velocity.

• Where is the ball after t = 1.5s?

x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2, where g = 9.80665 (1)

How would you compute the position in a program?

OOP with Java Thomas Weise 11/24

Example: Vertical Ball Throw

Listing: A program computing x(t).

/**

* A ball is thrown vertically upwards into the air by a 1.8m tall person

* with velocity 10m/s. Where is it after t=1.5 seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

double x0 = 1.8d; // initial vertical position

double v0 = 10d; // initial velocity upwards

double g = 9.80665d; // free fall acceleration downwards

double t = 1.5d; // the time

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println(xt); // prints 5.767518750000001

}

}

OOP with Java Thomas Weise 12/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V|=E compute the bit-based “or” of the the value of V and the value of expression
E , store the result in V and return it; only boolean

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V|=E compute the bit-based “or” of the the value of V and the value of expression
E , store the result in V and return it; only boolean

VO=E Generalization of the above: O can be any binary (two-argument) operator:
Apply O to values of variable V and expression E , store the result of O in
variable V and return it; V and E must have compatible types

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V|=E compute the bit-based “or” of the the value of V and the value of expression
E , store the result in V and return it; only boolean

VO=E Generalization of the above: O can be any binary (two-argument) operator:
Apply O to values of variable V and expression E , store the result of O in
variable V and return it; V and E must have compatible types

V++ add 1 to numerical variable V , return the value that V had before adding

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V|=E compute the bit-based “or” of the the value of V and the value of expression
E , store the result in V and return it; only boolean

VO=E Generalization of the above: O can be any binary (two-argument) operator:
Apply O to values of variable V and expression E , store the result of O in
variable V and return it; V and E must have compatible types

V++ add 1 to numerical variable V , return the value that V had before adding
++V add 1 to numerical variable V , return the value that V has after adding

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

V=E store the value of expression E in variable V and return it

V+=E add value of expression E to variable V , store the result in V and return it;
only numerical types

V*=E multiply the value of V with value of expression E , store the result in V and
return it; only numerical types

V|=E compute the bit-based “or” of the the value of V and the value of expression
E , store the result in V and return it; only boolean

VO=E Generalization of the above: O can be any binary (two-argument) operator:
Apply O to values of variable V and expression E , store the result of O in
variable V and return it; V and E must have compatible types

V++ add 1 to numerical variable V , return the value that V had before adding
++V add 1 to numerical variable V , return the value that V has after adding
V-- subtract 1 from numerical variable V , return the value that V had before the

subtraction
--V subtract 1 to numerical variable V , return the value that V has after the

subtraction

V is a variable, E is an expressions of a compatible type, O is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Examples for In-Place Operators

Listing: A program working with in-place operators.

/** Examples for in-place operators */

public class InPlaceOperators {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int i = 1, j = 5; // declare the two integer variables i and j, where i=1 and j=5

System.out.println(i); // prints 1

i += j; // add j and i, store result in i, i.e., i=i+j = (1+5)

System.out.println(i); // prints 6

j *= i; // multiply j with i, store result in j (j = (j*i) = 6*5

System.out.println(j); // prints 30

j /= ++i; // first , add 1 to i (store result in i) and return it, then divide j by it and store in j

System.out.println(i); // prints 7

System.out.println(j); // prints 30/7 = 4

i *= j++; // first , add 1 to j (store result but return old value), then multiply with i and store in i

System.out.println(j); // prints 4+1 = 5

System.out.println(i); // prints 7 * 4 = 28

i |= (j ^= 3); // first do binary xor of j with 3, store in j, then binary or of result with i and store

System.out.println(j); // prints (5)^3 = (1 | 4) ^ 3 = 2 | 4 = 6

System.out.println(i); // prints (28) | 6 = (16 | 8 | 4) | 2 = 30

i *= ((--j) * (i++)) - j; // this is a tough cooky: i = 30 * [((6 -1) * 30)) - 5] <-- never do such stuff

System.out.println(i); // prints 30*145=4350 .. (the final multiplication takes the original i value)

}

}

OOP with Java Thomas Weise 14/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A!=B true if and only if A does not have the exact same value as B

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A!=B true if and only if A does not have the exact same value as B

A>B true if and only if A has a greater value as B , numerical types only

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A!=B true if and only if A does not have the exact same value as B

A>B true if and only if A has a greater value as B , numerical types only
A>=B true if and only if A has a greater or equal value as B , numerical types only

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A!=B true if and only if A does not have the exact same value as B

A>B true if and only if A has a greater value as B , numerical types only
A>=B true if and only if A has a greater or equal value as B , numerical types only
A<B true if and only if A has a smaller value as B , numerical types only

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Comparison Operators: Any Type in, boolean out

A==B true if and only if A has the exact same value as B

A!=B true if and only if A does not have the exact same value as B

A>B true if and only if A has a greater value as B , numerical types only
A>=B true if and only if A has a greater or equal value as B , numerical types only
A<B true if and only if A has a smaller value as B , numerical types only
A<=B true if and only if A has a smaller or equal value as B , numerical types only

A and B are expressions of compatible types

OOP with Java Thomas Weise 15/24

Examples for Comparison Operators

Listing: A program working with comparison operators.

/** Examples for comparison operators */

public class ComparisonOperators {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

double a = 5d, b = 6d; // allocate and initialize two double variables

boolean c = (a == b); // allocate boolean c is true if a==b, false otherwise

System.out.println(c); // false

boolean d = (a < b); // allocate boolean d, set to true iff a < b

System.out.println(d); // true

boolean e = (c == d); // allocate boolean e, set to true if boolean c == boolean d

System.out.println(e); // false

e = (c = d); // careful here: (c = d) is not a comparison but in-place assignment ...

System.out.println(e); // true

e = (((71d - 0.1d) - 71d) + 0.1d) == 0d; // should be 0, but remember limited precision ...

System.out.println(e); // false: never use == or != with floating point , use >=, <=, <, > only

e = (5.4d != 4.5d); // is 5.4 different from 4.5?

System.out.println(e); // true , ok, if that would not work , we would have a serious problem :-)

}

}

OOP with Java Thomas Weise 16/24

Boolean Expressions: Basic Operators

A&&B the result of the Boolean “and” of A and B

A and B are boolean expressions

OOP with Java Thomas Weise 17/24

Boolean Expressions: Basic Operators

A&&B the result of the Boolean “and” of A and B

A||B the result of the Boolean “or” of A and B

A and B are boolean expressions

OOP with Java Thomas Weise 17/24

Boolean Expressions: Basic Operators

A&&B the result of the Boolean “and” of A and B

A||B the result of the Boolean “or” of A and B

A^B the result of the Boolean “xor” of A and B

A and B are boolean expressions

OOP with Java Thomas Weise 17/24

Boolean Expressions: Basic Operators

A&&B the result of the Boolean “and” of A and B

A||B the result of the Boolean “or” of A and B

A^B the result of the Boolean “xor” of A and B

!A the result of the Boolean “not”

A and B are boolean expressions

OOP with Java Thomas Weise 17/24

Examples for Boolean Operators

Listing: A program working with Boolean operators.

/** Examples for boolean operators */

public class BooleanOperators {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

boolean res; // declare boolean variable res

res = false || true; // store false "or" true in variable "res"

System.out.println(res); // prints true

res = res && false; // store res "and" false in variable "res"

System.out.println(res); // prints false

res = !res; // store "not" res in variable "res"

System.out.println(res); // prints true

res = res ^ res; // store res "xor" res in res

System.out.println(res); // prints false

}

}

OOP with Java Thomas Weise 18/24

Ternary Expression: boolean in, any type out

A?B:C the result of B if and only if the boolean expression A evaluates to true , the
result of B otherwise

A is a boolean expression, B and C are expressions of compatible types

OOP with Java Thomas Weise 19/24

Examples for the Ternary Operator

Listing: A program working with the ternary operator.

/** Examples for boolean operators */

public class TernaryOperator {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

int a = 5, b = 11; // declare and initialize int variables a=5 and b=11

double c = (a > b) ? -1d : 1d; // if a>b, set c=-1d; otherwise set c=1d;

System.out.println(c); // prints 1.0

c = (a >= (b/2)) ? (2d * c) : (2d / c); // if a>=b/2, set c to 2c else to 2/c

System.out.println(c); // prints 2.0, since b/2 is 5 due to integer division

boolean d = (c>a) ? true : (a > b); // if c>a, then set d to true , else set d to (a>b)

System.out.println(d); // false: since c<a, we check whether a>b, which is false

}

}

OOP with Java Thomas Weise 20/24

String Concatenation

A+B return a String which starts A and continues with the String representation

of B (convert B to String if necessary)

OOP with Java Thomas Weise 21/24

String Concatenation

A+B return a String which starts A and continues with the String representation

of B (convert B to String if necessary)

A+=B append the String representation of B (convert B to String if necessary) to

the String A and store the result in A

OOP with Java Thomas Weise 21/24

Examples String Concatenation

Listing: A program working with the String concatenation.

/** Examples for String concatenation */

public class StringConcatenation {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

String text; // declare String variable text

text = "Hello World!"; // store Hello World! in text //$NON -NLS -1$

System.out.println(text); // prints "Hello World !"

text = text + " It's me!"; //add It's Me! to text //$NON -NLS -1$

System.out.println(text); // prints "Hello World! It's me!"

text = "The result of 5+6 is " + (5+6); // concatenate (5+6) as string to string //$NON -NLS -1$

System.out.println(text); // prints "The result of 5+6 is 11"

text = "The result of 5+6 is " + 5 + 6; // concatenate 5 to string then 6 string //$NON -NLS -1$

System.out.println(text); // prints "The result of 5+6 is 56" <- careful with concatenation , use ()

}

}

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized/stored in a resource but to be used as it. Ignore them.

OOP with Java Thomas Weise 22/24

Summary

• We have learned how to compute with the basic types in Java

• We have looked into what to do with integers, floating point
numbers, booleans, and strings

• We have learned binary mathematical operators, in-place
assignments/updates, string concatenation, bit operators, etc.

• We have also looked a bit more into the limits of the types: All data
types occupy a finite, fixed amount of memory and therefore can only
represent a finite, fixed amount of values

• We had one productive example already, computing the position of a
vertically-upwards thrown ball

OOP with Java Thomas Weise 23/24

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 24/24

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction to Expressions
	Expressions

	Integer Expressions
	Integer Expressions: Basic Operators
	Examples for Integer Arithmetic
	Example for Overflow in Integer Arithmetic
	Example for Bit Shifting with Integers
	Examples for Integer Bit Operators

	Floating Point Expressions
	Floating Point Expressions: Basic Operators
	Examples for Floating Point Arithmetic
	Example: Vertical Ball Throw
	Example: Vertical Ball Throw

	Assignment Operators and Expressions
	Assignment Operators: Any Type in, Same Type out
	Examples for In-Place Operators

	Comparison Expressions
	Comparison Operators: Any Type in, boolean out
	Examples for Comparison Operators

	Boolean Expressions
	Boolean Expressions: Basic Operators
	Examples for Boolean Operators

	The Ternary Operator
	Ternary Expression: boolean in, any type out
	Examples for the Ternary Operator

	String Expressions
	String Concatenation
	Examples String Concatenation

	Summary
	Summary

	Presentation End

