LR BT

HEFEI UNIVERSITY

OOP with Java

5. Operators and Expressions
Thomas Weise - % Z &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &/E%

% AR B2

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST %.L X 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction to Expressions

@ Integer Expressions

@ Floating Point Expressions

@ Assignment Operators and Expressions
@ Comparison Expressions

@ Boolean Expressions

@ The Ternary Operator

@ Siring Fxpressions

OOP with Java Thomas Weise

e So far, we have assigned two things to variables

e So far, we have assigned two things to variables:
@ a value literal of the right (compatible) type

e So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
@ the value of another, compatible variable

e So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
@ the value of another, compatible variable

e Actually, we can assign much more complex stuff, namely expressions

e So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
@ the value of another, compatible variable

e Actually, we can assign much more complex stuff, namely expressions
e The assignment of a variable actually is something like

[variableName] = [expressionOfCompatibleTypel

So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
@ the value of another, compatible variable

Actually, we can assign much more complex stuff, namely expressions

The assignment of a variable actually is something like
[variableName] = [expressionOfCompatibleTypel

A literal value of a type, say a number, is an expression

Expressions %()

So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
® the value of another, compatible variable

Actually, we can assign much more complex stuff, namely expressions

The assignment of a variable actually is something like

[variableName] = [expressionOfCompatibleTypel

A literal value of a type, say a number, is an expression

A variable itself can be used in an expression as well

OOP with Java Thomas Weise 3/24

Expressions

”

>
<

So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
® the value of another, compatible variable

Actually, we can assign much more complex stuff, namely expressions

The assignment of a variable actually is something like

[variableName] = [expressionOfCompatibleTypel

A literal value of a type, say a number, is an expression

A variable itself can be used in an expression as well

The assignment itself is an expression (of the type of the assigned
variable)

OOP with Java Thomas Weise 3/24

Expressions %\

So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
® the value of another, compatible variable

Actually, we can assign much more complex stuff, namely expressions

The assignment of a variable actually is something like

[variableName] = [expressionOfCompatibleType]

A literal value of a type, say a number, is an expression

A variable itself can be used in an expression as well

The assignment itself is an expression (of the type of the assigned
variable)

Operators can be grouped by parentheses ()

OOP with Java Thomas Weise 3/24

A+B the result of the addition of A and B, careful with overflows. ..

A and B are expressions of the right numerical type

A+B the result of the addition of A and B, careful with overflows. ..
A-B the result of the subtraction of A and B, careful with overflows. ..

A and B are expressions of the right numerical type

A+B the result of the addition of A and B, careful with overflows. ..
A-B the result of the subtraction of A and B, careful with overflows. ..
A*B the result of the multiplication of A and B, careful with overflows. ..

A and B are expressions of the right numerical type

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of A by B, careful result is truncated (no
fractions!). ..

A and B are expressions of the right numerical type

A+B
A-B
AxB
A/B

A%B

the result of the addition of A and B, careful with overflows. ..
the result of the subtraction of A and B, careful with overflows. .

the result of the multiplication of A and B, careful with overflows. ..

the result of the integer division of A by B, careful result is truncated (no
fractions!). ..

the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of A by B, careful result is truncated (no
fractions!). ..

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A and B are expressions of the right numerical type

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of A by B, careful result is truncated (no
fractions!). ..

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the

highest-order bit/sign

A and B are expressions of the right numerical type

Integer Expressions: Basic Operators %\’

1AQ |
A+B the result of the addition of A and B, careful with overflows. ..
A-B the result of the subtraction of A and B, careful with overflows. ..
A*B the result of the multiplication of A and B, careful with overflows. ..
A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...
A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting A by B bits to the left

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators %\’

1AQ |
A+B the result of the addition of A and B, careful with overflows. ..
A-B the result of the subtraction of A and B, careful with overflows. ..
A*B the result of the multiplication of A and B, careful with overflows. ..
A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...
A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting A by B bits to the left

AlB the result of the bit-wise “or” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators %

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting Ao by B bits to the left

AlB the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators %

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting Ao by B bits to the left

AlB the result of the bit-wise “or” of A and B
A&B the result of the bit-wise “and” of a4 and B
A"B the result of the bit-wise “xor” of A and B

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators %

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting Ao by B bits to the left

AlB the result of the bit-wise “or” of A and B
A&B the result of the bit-wise “and” of a4 and B
A"B the result of the bit-wise “xor” of A and B

“A the result of the bit-wise “not” of a

A and B are expressions of the right numerical type

OOP with Java Thomas Weise 4/24

Integer Expressions: Basic Operators

W

>
<

A+B the result of the addition of A and B, careful with overflows. ..

A-B the result of the subtraction of A and B, careful with overflows. ..

A*B the result of the multiplication of A and B, careful with overflows. ..

A/B the result of the integer division of Ao by B, careful result is truncated (no
fractions!). ...

A%B the result of the rest of the integer division of A and B

A>>B the result of shifting A by B bits to the right without touching the sign

A>>>B the result of shifting A by B bits to the right, shifting everything, also the
highest-order bit/sign

A<<B the result of shifting Ao by B bits to the left

AlB the result of the bit-wise “or” of A and B

A&B the result of the bit-wise “and” of A and B

A"B the result of the bit-wise “xor” of A and B

“A the result of the bit-wise “not” of &

A and B are expressions of the right numerical type

® integer arithmetic is exact, i.e., ((a —b) — a) + b = 0, but since we have only 8,

16,

32, or 64 bits, the range of numbers we can represent is limited

® thus, if, e.g., a + b is outside of the range of numbers we can represent, it will be
“wrapped back in", i.e., we get the wrong result

OOP with Java Thomas Weise

4/24

Examples for Integer Arithmetic

public class IntegerArithmetic {

public static final void main(Stringl[] args) {
int res;

res = 5 + 4;
System.out.println(res);
res = res + 4;
System.out.println(res);
res = res + 4;
System.out.println(res);
res = 171 / res;
System.out.println(res);
res = res * 7;
System.out.println(res);
res = res % 8;
System.out.println(res);

res = 3 * 6 + 10 - 4 * 5;
System.out.println(res);

res = 3 * ((6 + 10) - 4) * 5;
System.out.println(res);

OOP with Java Thomas Weise 5/24

Example for Overflow in Integer Arithmetic %\’

Listing: A program encountering an integer overflow.

hme overflow */

public class IntegerOverflow {

public static final void maln(Strlng[] args) {
int res; // declare int variable E

res = 1_000_000;

System.out.println(res
res = res * 1000; // stc
System.out.println(res);

res = res * 3; /
System.out. prlntln(res),

OOP with Java Thomas Weise 6/24

Example for Bit Shifting with Integers %\’

A program performing integer bit shiftin

public class IntegerBitShifting {

public static final void main(String[] args) {

int res;

res = 128;
System.out.println(res);
res = res << 2;

System.out.println(res);

res = res >> 3;
System.out.println(res);

res = 0b11000000_.00000000_00000000_00000000 ;
System.out.println(res);

res = 0b11000000.00000000.00000000_00000000 >> 1;
System.out.println(res);

res = 0b11000000_.00000000_00000000_00000000 >>> 1;
System.out.println(res);

OOP with Java Thomas Weise 7/24

Examples for Integer Bit Operators %\’

1AQ

Listi A program working with bit operators on integer values.

public class IntegerBitOperators {

public static final void main(String[] args) {

int res;

res = 1;
System.out.println(res);
res = res | 1;
System.out.println(res);
res = res | 8;

System.out.println(res);

res = res & 24;
System.out.println(res);

res = res " 9;
System.out.println(res);

res = “res;
System.out.println(res);

OOP with Java Thomas Weise 8/24

A+B the result of the addition of Ao and B, overflows become infinity. ..

A and B are expressions of the right numerical type

A+B the result of the addition of Ao and B, overflows become infinity. ..
A-B the result of the subtraction of A and B, overflows become infinity. ..

A and B are expressions of the right numerical type

A+B the result of the addition of Ao and B, overflows become infinity. ..
A-B the result of the subtraction of A and B, overflows become infinity. ..
AxB the result of the multiplication of 4 and B, overflows become infinity. ..

A and B are expressions of the right numerical type

A+B
A-B
A*B
A/B

the result of the addition of A and B, overflows become infinity. . .

the result of the subtraction of A and B, overflows become infinity. ..
the result of the multiplication of A and B, overflows become infinity. ..
the result of the integer division of A by B, overflows become infinity. ..

A and B are expressions of the right numerical type

A+B
A-B
A*B
A/B
A%B

the result of the addition of A and B, overflows become infinity. . .

the result of the subtraction of A and B, overflows become infinity. ..
the result of the multiplication of A and B, overflows become infinity. ..
the result of the integer division of A by B, overflows become infinity. ..
the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

A+B
A-B
A*B
A/B
A%B

the result of the addition of A and B, overflows become infinity. . .

the result of the subtraction of A and B, overflows become infinity. ..
the result of the multiplication of A and B, overflows become infinity. ..
the result of the integer division of A by B, overflows become infinity. ..
the result of the rest of the integer division of A and B

A and B are expressions of the right numerical type

® due to the limited number of bits in mantissa and exponent, floating point
arithmetic is not necessarily exact, i.e., ((a — b) — a) + b may be different from 0
sometimes

Examples for Floating Point Arithmetic

A program working with floati

public class FloatingPointArithmetic {

public static final void main(Stringl[] args) {
double resl, res2;

resl = 5d + 4.1d;
System.out.println(rest);

resl = resl + 4.1d;
System.out.println(resi);
resl = resl + 4.1d;

System.out.println(resi);

res2 = 171d / resi;
System.out.println(res2);
res2 = resl * res2;
System.out.println(res2);
res2 = (171d / res1) * 17.3d;
System.out.println(res2);

resl = (((10d / 8d) * 8d) - 10.1d) + 0.1d;
System.out.println(resi);

resl = ((10.7d - 0.12d) - 10.7d + 0.12d);
System.out.println(resl);

resl = (8.5d % 4.14d);
System.out.println(resil);

OOP with Java Thomas Weise 10/24

e Assume a xg = 1.8m tall person throws a ball vertically upwards into
the air with vg = 10m/s initial velocity.

e Where is the ball after ¢t = 1.5s7
2(t) = 2o + vo ¥ t — 0.5 % g % t2, where g = 9.80665 (1)

How would you compute the position in a program?

Example: Vertical Ball Throw %\’

public class VerticalBallThrow {

publ1c static f:mal vo:Ld maln(Str1ng[] args) {
double x0 = 1.84; /. m
double v0 = 10d; //
double g 9.80665d
double t 1.5d; /.
double xt = x0 + (vO*t) - 0.5dxg*t*t; //) 0 + 0.5
System.out.println(xt); // prints 5.7675187

OOP with Java Thomas Weise 12/24

V=E store the value of expression E in variable v and return it

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

V=E store the value of expression E in variable v and return it
v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

V=l store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

V=l store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

Assignment Operators: Any Type in, Same Type out %},

=E store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out %}’

V=E store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out %}’

V=E store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding

++V add 1 to numerical variable v, return the value that v has after adding

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24

Assignment Operators: Any Type in, Same Type out

%\

1AQ2

V=E store the value of expression E in variable v and return it

v+=E add value of expression E to variable v, store the result in v and return it;

only numerical types

vx=E multiply the value of v with value of expression E, store the result in v and

return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression

E, store the result in v and return it; only boolean

vo=E Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in

variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding
++V add 1 to numerical variable v, return the value that v has after adding

v-- subtract 1 from numerical variable v, return the value that v had before the

subtraction

--v subtract 1 to numerical variable v, return the value that v has after the

subtraction

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise

13/24

Examples for In-Place Operators %\’

Listi

A program working with in-place operators.

public class InPlaceOperators {

public static final void main(String[] args) {
int i =1, j = 5;

System.out.println(i);
i+= j;
System.out.println(i);
Jo*= i3
System.out.println(j);
j /= ++i;
System.out.println(i);
System.out.println(j);
iok= gt
System.out.println(j);
System.out.println(i);
il=(j "= 3);
System.out.println(j);
System.out.println(i);
A= {((==g) @ @Gos)) = g3
System.out.println(i);

OOP with Java Thomas Weise 14/24

A== true if and only if A has the exact same value as B

A and B are expressions of compatible types

A== true if and only if A has the exact same value as B
A'=B true if and only if A does not have the exact same value as B

A and B are expressions of compatible types

A== true if and only if A has the exact same value as B
A'=B true if and only if A does not have the exact same value as B
A>B true if and only if A has a greater value as B, numerical types only

A and B are expressions of compatible types

A== true
A!=B true
A>B true
A>=B true

if and only if A has the exact same value as B

if and only if A does not have the exact same value as B

if and only if A has a greater value as B, numerical types only

if and only if A has a greater or equal value as B, numerical types only

A and B are expressions of compatible types

A==
A'=B
A>B
A>=B
A<B

true
true
true
true

true

if and only if
if and only if
if and only if
if and only if
if and only if

= = = =

has the exact same value as B

does not have the exact same value as B

has a greater value as B, numerical types only

has a greater or equal value as B, numerical types only
has a smaller value as B, numerical types only

A and B are expressions of compatible types

A==
A'=B
A>B
A>=B
A<B
A<=B

true
true
true
true
true

true

if and only if
if and only if
if and only if
if and only if
if and only if
if and only if

L

has the exact same value as B

does not have the exact same value as B

has a greater value as B, numerical types only

has a greater or equal value as B, numerical types only
has a smaller value as B, numerical types only

has a smaller or equal value as B, numerical types only

A and B are expressions of compatible types

Examples for Comparison Operators

IRTLY: his parameter for n
public static final void main(String[] args) {

double a = 5d, b = 6d; / allc te a nita
boolean ¢ = (a == b);
System.out.println(c);
boolean d = (a < b); /.
System.out.println(d);
boolean e = (c == d);
System.out.println(e);
e = (c = d); // caref
System.out . prlntln(e), /7
e = (((71d - 0.1d) - 71d) + 0 1d> == 0d; // h ld be

System.out.println(e); // f¢ ever use == or != with

e = (5.4d != 4.5d); // is 5./ d
System.out.println(e); // true t b =)
}
¥
y
OOP with Java Thomas Weise 16/24

Ag&B the result of the Boolean “and” of A and B

A and B are boolean expressions

Ag&B the result of the Boolean “and” of A and B
AlIB the result of the Boolean “or” of A and B

A and B are boolean expressions

Ag&B the result of the Boolean “and” of A and B
AlIB the result of the Boolean “or” of A and B
A°B the result of the Boolean “xor” of A and B

A and B are boolean expressions

Ag&B the result of the Boolean “and” of A and B
AlIB the result of the Boolean “or” of A and B
A°B the result of the Boolean “xor” of A and B

1A the result of the Boolean “not”

A and B are boolean expressions

Examples for Boolean Operators

ve ignore

parameter for now */
public static final void maln(Strlng[] args) {
boolean res; // de

res = false || true; / tore "or" true
System.out.println(res);

res = res && false; E e
System.out. prlntln(res),

res = lres; // tore 0 "re
System.out.println(res);

res = res " res; g

System.out.println(res);

OOP with Java Thomas Weise

18/24

A?B:C the result of B if and only if the boolean expression A evaluates to true , the
result of B otherwise

A isa boolean expression, B and C are expressions of compatible types

Examples for the Ternary Operator %\’

Listing: A program working with the ternary operator.

public class TernaryOperator {

public static f1nal void mam(sn-mg[] args) {
int a =5, b = 11; //
double ¢ = (a > b) 7 —ld
System.out.println(c);
c = (a > (b/2)) ? (24 * c)
System.out.println(c); //
boolean d = (c>a) ? true
System.out.println(d); //

(2d / c)

(a > b), if

OOP with Java Thomas Weise 20/24

A+B return a String which starts A and continues with the string representation
of B (convert B to String if necessary)

A+B

A+=B

return a String which starts A and continues with the string representation

of B (convert B to String if necessary)
append the sString representation of B (convert B to String if necessary) to
the string A and store the result in A

Examples String Concatenation

public class StringConcatenation {

public static final void main(String[] args) {
String text; // decla 5 i . e te

text = "HellouWorld!"; //sto 18

System.out.println(text);

text = text + " It's.me!";

System.out.println(text); :

text = "The,result,of 5+6,is, " 9 g -NLS-18
System.out.println(text);

text = "The result,of 5+6uis, " str t LS -1

System.out.println(text);

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized /stored in a resource but to be used as it. Ignore them.

OOP with Java Thomas Weise 22/24

Summary %\

1AQ

e We have learned how to compute with the basic types in Java

e We have looked into what to do with integers, floating point
numbers, booleans, and strings

e We have learned binary mathematical operators, in-place
assignments/updates, string concatenation, bit operators, etc.

e We have also looked a bit more into the limits of the types: All data
types occupy a finite, fixed amount of memory and therefore can only
represent a finite, fixed amount of values

e We had one productive example already, computing the position of a
vertically-upwards thrown ball

OOP with Java Thomas Weise 23/24

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction to Expressions
	Expressions

	Integer Expressions
	Integer Expressions: Basic Operators
	Examples for Integer Arithmetic
	Example for Overflow in Integer Arithmetic
	Example for Bit Shifting with Integers
	Examples for Integer Bit Operators

	Floating Point Expressions
	Floating Point Expressions: Basic Operators
	Examples for Floating Point Arithmetic
	Example: Vertical Ball Throw
	Example: Vertical Ball Throw

	Assignment Operators and Expressions
	Assignment Operators: Any Type in, Same Type out
	Examples for In-Place Operators

	Comparison Expressions
	Comparison Operators: Any Type in, boolean out
	Examples for Comparison Operators

	Boolean Expressions
	Boolean Expressions: Basic Operators
	Examples for Boolean Operators

	The Ternary Operator
	Ternary Expression: boolean in, any type out
	Examples for the Ternary Operator

	String Expressions
	String Concatenation
	Examples String Concatenation

	Summary
	Summary

	Presentation End

