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Expressions %\

So far, we have assigned two things to variables:

@ a value literal of the right (compatible) type
® the value of another, compatible variable

Actually, we can assign much more complex stuff, namely expressions

The assignment of a variable actually is something like

[variableName] = [expressionOfCompatibleType]

A literal value of a type, say a number, is an expression

A variable itself can be used in an expression as well

The assignment itself is an expression (of the type of the assigned
variable)

Operators can be grouped by parentheses ()
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A and B are expressions of the right numerical type

® integer arithmetic is exact, i.e., ((a —b) — a) + b = 0, but since we have only 8,

16,

32, or 64 bits, the range of numbers we can represent is limited

® thus, if, e.g., a + b is outside of the range of numbers we can represent, it will be
“wrapped back in", i.e., we get the wrong result
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Examples for Integer Arithmetic

public class IntegerArithmetic {

public static final void main(Stringl[] args) {
int res;

res = 5 + 4;
System.out.println(res);
res = res + 4;
System.out.println(res);
res = res + 4;
System.out.println(res);
res = 171 / res;
System.out.println(res);
res = res * 7;
System.out.println(res);
res = res % 8;
System.out.println(res);

res = 3 * 6 + 10 - 4 * 5;
System.out.println(res);

res = 3 * ((6 + 10) - 4) * 5;
System.out.println(res);
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Example for Overflow in Integer Arithmetic %\’

Listing: A program encountering an integer overflow.

hme overflow */

public class IntegerOverflow {

public static final void maln(Strlng[] args) {
int res; // declare int variable E

res = 1_000_000;

System.out.println(res
res = res * 1000; // stc
System.out.println(res);

res = res * 3; /
System.out. prlntln(res),
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Example for Bit Shifting with Integers %\’

A program performing integer bit shiftin

public class IntegerBitShifting {

public static final void main(String[] args) {

int res;

res = 128;
System.out.println(res);
res = res << 2;

System.out.println(res);

res = res >> 3;
System.out.println(res);

res = 0b11000000_.00000000_00000000_00000000 ;
System.out.println(res);

res = 0b11000000.00000000.00000000_00000000 >> 1;
System.out.println(res);

res = 0b11000000_.00000000_00000000_00000000 >>> 1;
System.out.println(res);
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Examples for Integer Bit Operators %\’
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Listi A program working with bit operators on integer values.

public class IntegerBitOperators {

public static final void main(String[] args) {

int res;

res = 1;
System.out.println(res);
res = res | 1;
System.out.println(res);
res = res | 8;

System.out.println(res);

res = res & 24;
System.out.println(res);

res = res " 9;
System.out.println(res);

res = “res;
System.out.println(res);
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® due to the limited number of bits in mantissa and exponent, floating point
arithmetic is not necessarily exact, i.e., ((a — b) — a) + b may be different from 0
sometimes




Examples for Floating Point Arithmetic

A program working with floati

public class FloatingPointArithmetic {

public static final void main(Stringl[] args) {
double resl, res2;

resl = 5d + 4.1d;
System.out.println(rest);

resl = resl + 4.1d;
System.out.println(resi);
resl = resl + 4.1d;

System.out.println(resi);

res2 = 171d / resi;
System.out.println(res2);
res2 = resl * res2;
System.out.println(res2);
res2 = (171d / res1) * 17.3d;
System.out.println(res2);

resl = (((10d / 8d) * 8d) - 10.1d) + 0.1d;
System.out.println(resi);

resl = ((10.7d - 0.12d) - 10.7d + 0.12d);
System.out.println(resl);

resl = (8.5d % 4.14d);
System.out.println(resil);
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e Assume a xg = 1.8m tall person throws a ball vertically upwards into
the air with vg = 10m/s initial velocity.

e Where is the ball after ¢t = 1.5s7
2(t) = 2o + vo ¥ t — 0.5 % g % t2, where g = 9.80665 (1)

How would you compute the position in a program?




Example: Vertical Ball Throw %\’

public class VerticalBallThrow {

publ1c static f:mal vo:Ld maln(Str1ng[] args) {
double x0 = 1.84; /. m
double v0 = 10d; //
double g 9.80665d
double t 1.5d; /.
double xt = x0 + (vO*t) - 0.5dxg*t*t; // ) 0 + 0.5
System.out.println(xt); // prints 5.7675187
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Assignment Operators: Any Type in, Same Type out %},

=E store the value of expression E in variable v and return it

v+=E  add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E  multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E  Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24



Assignment Operators: Any Type in, Same Type out %}’

V=E store the value of expression E in variable v and return it

v+=E  add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E  multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E  Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24



Assignment Operators: Any Type in, Same Type out %}’

V=E store the value of expression E in variable v and return it

v+=E  add value of expression E to variable v, store the result in v and return it;
only numerical types

vx=E  multiply the value of v with value of expression E, store the result in v and
return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression
E, store the result in v and return it; only boolean

vo=E  Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in
variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding

++V add 1 to numerical variable v, return the value that v has after adding

Vv is a variable, E is an expressions of a compatible type, 0 is any of the binary (two-argument) operators discussed for that type

OOP with Java Thomas Weise 13/24



Assignment Operators: Any Type in, Same Type out

%\

1AQ2

V=E store the value of expression E in variable v and return it

v+=E  add value of expression E to variable v, store the result in v and return it;

only numerical types

vx=E  multiply the value of v with value of expression E, store the result in v and

return it; only numerical types

VI=E compute the bit-based “or" of the the value of v and the value of expression

E, store the result in v and return it; only boolean

vo=E  Generalization of the above: 0 can be any binary (two-argument) operator:
Apply 0 to values of variable v and expression E, store the result of 0 in

variable v and return it; v and E must have compatible types

V++ add 1 to numerical variable v, return the value that v had before adding
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Examples for In-Place Operators %\’

Listi

A program working with in-place operators.

public class InPlaceOperators {

public static final void main(String[] args) {
int i =1, j = 5;

System.out.println(i);
i+= j;
System.out.println(i);
Jo*= i3
System.out.println(j);
j /= ++i;
System.out.println(i);
System.out.println(j);
iok= gt
System.out.println(j);
System.out.println(i);
il=(j "= 3);
System.out.println(j);
System.out.println(i);
A= {((==g) @ @Gos)) = g3
System.out.println(i);
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A== true if and only if A has the exact same value as B
A'=B  true if and only if A does not have the exact same value as B
A>B true if and only if A has a greater value as B, numerical types only

A and B are expressions of compatible types




A== true
A!=B true
A>B true
A>=B true

if and only if A has the exact same value as B

if and only if A does not have the exact same value as B

if and only if A has a greater value as B, numerical types only

if and only if A has a greater or equal value as B, numerical types only

A and B are expressions of compatible types




A==
A'=B
A>B
A>=B
A<B

true
true
true
true

true

if and only if
if and only if
if and only if
if and only if
if and only if

= = = =

has the exact same value as B

does not have the exact same value as B

has a greater value as B, numerical types only

has a greater or equal value as B, numerical types only
has a smaller value as B, numerical types only

A and B are expressions of compatible types




A==
A'=B
A>B
A>=B
A<B
A<=B

true
true
true
true
true

true

if and only if
if and only if
if and only if
if and only if
if and only if
if and only if

L

has the exact same value as B

does not have the exact same value as B

has a greater value as B, numerical types only

has a greater or equal value as B, numerical types only
has a smaller value as B, numerical types only

has a smaller or equal value as B, numerical types only

A and B are expressions of compatible types




Examples for Comparison Operators

IRTLY: his parameter for n
public static final void main(String[] args) {

double a = 5d, b = 6d; / allc te a nita
boolean ¢ = (a == b);
System.out.println(c);
boolean d = (a < b); /.
System.out.println(d);
boolean e = (c == d);
System.out.println(e);
e = (c = d); // caref
System.out . prlntln(e), /7
e = (((71d - 0.1d) - 71d) + 0 1d> == 0d; // h ld be

System.out.println(e); // f¢ ever use == or != with

e = (5.4d != 4.5d); // is 5./ d
System.out.println(e); // true t b =)
}
¥
y
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Ag&B  the result of the Boolean “and” of A and B

A and B are boolean expressions
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Ag&B  the result of the Boolean “and” of A and B
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Ag&B  the result of the Boolean “and” of A and B
AlIB  the result of the Boolean “or” of A and B
A°B the result of the Boolean “xor” of A and B

1A the result of the Boolean “not”

A and B are boolean expressions




Examples for Boolean Operators

ve ignore

parameter for now */
public static final void maln(Strlng[] args) {
boolean res; // de

res = false || true; / tore "or" true
System.out.println(res);

res = res && false; E e
System.out. prlntln(res),

res = lres; // tore 0 "re
System.out.println(res);

res = res " res; g

System.out.println(res);
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A?B:C  the result of B if and only if the boolean expression A evaluates to true , the
result of B otherwise

A isa boolean expression, B and C are expressions of compatible types




Examples for the Ternary Operator %\’

Listing: A program working with the ternary operator.

public class TernaryOperator {

public static f1nal void mam(sn-mg[] args) {
int a =5, b = 11; //
double ¢ = (a > b) 7 —ld
System.out.println(c);
c = (a > (b/2)) ? (24 * c)
System.out.println(c); //
boolean d = (c>a) ? true
System.out.println(d); //

(2d / c)

(a > b), if

OOP with Java Thomas Weise 20/24



A+B return a String which starts A and continues with the string representation
of B (convert B to String if necessary)




A+B

A+=B

return a String which starts A and continues with the string representation

of B (convert B to String if necessary)
append the sString representation of B (convert B to String if necessary) to
the string A and store the result in A




Examples String Concatenation

public class StringConcatenation {

public static final void main(String[] args) {
String text; // decla 5 i . e te

text = "HellouWorld!"; //sto 18

System.out.println(text);

text = text + " It's.me!";

System.out.println(text); :

text = "The,result,of 5+6,is, " 9 g -NLS-18
System.out.println(text);

text = "The result,of 5+6uis, " str t LS -1

System.out.println(text);

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized /stored in a resource but to be used as it. Ignore them.
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Summary %\

1AQ

e We have learned how to compute with the basic types in Java

e We have looked into what to do with integers, floating point
numbers, booleans, and strings

e We have learned binary mathematical operators, in-place
assignments/updates, string concatenation, bit operators, etc.

e We have also looked a bit more into the limits of the types: All data
types occupy a finite, fixed amount of memory and therefore can only
represent a finite, fixed amount of values

e We had one productive example already, computing the position of a
vertically-upwards thrown ball
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Thank you
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