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Eclipse

• one of the most popular integrated developer environments (IDEs) for
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Eclipse

• one of the most popular integrated developer environments (IDEs) for
Java

• syntax highlighting, online-compilation, refactoring, . . . : very
comfortable editor

• comes with lots of tools (which we will talk about later, see, e.g.,
Lesson 13: Debugging, Lesson 27: Testing with JUnit, and Lesson 30:
Building with Maven) integrated
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Installation

• go to http://www.eclipse.org
• click “Download”

• select Eclipse package (currently “Eclipse Neon” and “Download 64
bit”

• download the package

• unpack it into a folder of your liking

• inside that folder, you can find an executable named eclipse or

eclipse.exe −→ run it
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Installation
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Our First Program (revisited)

• So this below was our first program. We now want to edit and run it
in Eclipse.

Listing: The “Hello World” Program.

/**
* A simple program just printing " Hello World !" on the screen .<br/>
* Execute using Eclipse : 1) right - click " HelloWorld .java", 2) click "Run
* As", 3) click "Java Application "
*/

public class HelloWorld {

/** The main routine
* @param args
* we ignore this parameter for now */

public static final void main ( final String [] args ) {
System . out . println (" Hello  World !"); // print " Hello World !" to console

//$NON -NLS -1$
}

}
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Hello World

• We now want to try our “Hello World!” example in Eclipse
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Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.
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• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.
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• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java
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• And run out program (which will automatically be compiled for us)
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Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java

• Let’s fill in the code

• And run out program (which will automatically be compiled for us)

• Yay. . . everything worked well
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Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class
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Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class :
• source code goes into the sub-folder src
• compiled files go into the sub-folder bin

• Eclipse creates two more files, .project and .classpath (sometimes

also a .gitignore ) in the root folder of the project. . . . . . Let’s ignore
them for now
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IDEs

• Like most IDEs, Eclipse has a wide set of tools that make a
programmer more productive
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• Like most IDEs, Eclipse has a wide set of tools that make a
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1 syntax highlighting
2 refactoring
3 compilation of code while you type it
4 auto-completion
5 debugger
6 several other tools that we will use, such as Maven, git, JUnit. . .
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IDEs

• Like most IDEs, Eclipse has a wide set of tools that make a
programmer more productive, including:

1 syntax highlighting
2 refactoring
3 compilation of code while you type it
4 auto-completion
5 debugger
6 several other tools that we will use, such as Maven, git, JUnit. . .

• In software engineering, we always use IDEs
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Summary

1 We have learned what an IDE like Eclipse is.

2 We have downloaded and installed Eclipse.

3 We have created a first Eclipse project.

4 We have compiled and executed a program with Eclipse.

5 We have learned about the basic file structure of Eclipse projects.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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