
OOP with Java
3. The Eclipse Integrated Developer Environment

Thomas Weise · 汤卫思
tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所
230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction to Eclipse

2 Installation

3 A First Eclipse Project

4 Summary

OOP with Java Thomas Weise 2/10

we
bs

ite

Eclipse

• one of the most popular integrated developer environments (IDEs) for
Java

OOP with Java Thomas Weise 3/10

Eclipse

• one of the most popular integrated developer environments (IDEs) for
Java

• syntax highlighting, online-compilation, refactoring, . . . : very
comfortable editor

OOP with Java Thomas Weise 3/10

Eclipse

• one of the most popular integrated developer environments (IDEs) for
Java

• syntax highlighting, online-compilation, refactoring, . . . : very
comfortable editor

• comes with lots of tools (which we will talk about later, see, e.g.,
Lesson 13: Debugging, Lesson 27: Testing with JUnit, and Lesson 30:
Building with Maven) integrated

OOP with Java Thomas Weise 3/10

Installation

• go to http://www.eclipse.org
• click “Download”

• select Eclipse package (currently “Eclipse Neon” and “Download 64
bit”

• download the package

• unpack it into a folder of your liking

• inside that folder, you can find an executable named eclipse or

eclipse.exe −→ run it

OOP with Java Thomas Weise 4/10

http://www.eclipse.org

Installation

OOP with Java Thomas Weise 4/10

Our First Program (revisited)

• So this below was our first program. We now want to edit and run it
in Eclipse.

Listing: The “Hello World” Program.

/**
* A simple program just printing " Hello World !" on the screen .

* Execute using Eclipse : 1) right - click " HelloWorld .java", 2) click "Run
* As", 3) click "Java Application "
*/

public class HelloWorld {

/** The main routine
* @param args
* we ignore this parameter for now */

public static final void main (final String [] args) {
System . out . println (" Hello World !"); // print " Hello World !" to console

//$NON -NLS -1$
}

}

OOP with Java Thomas Weise 5/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java

• Let’s fill in the code

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java

• Let’s fill in the code

• And run out program (which will automatically be compiled for us)

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Hello World

• We now want to try our “Hello World!” example in Eclipse

• In Eclipse, we always work on Projects.

• A project may contain multiple source code files and resources.

• For this, we first need to create a new Java Project

• OK, we now have an empty project.

• We need to insert a new Java class

• We have now an empty HelloWorld.java

• Let’s fill in the code

• And run out program (which will automatically be compiled for us)

• Yay. . . everything worked well

OOP with Java Thomas Weise 6/10

Hello World

OOP with Java Thomas Weise 6/10

Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class

OOP with Java Thomas Weise 7/10

Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class :
• source code goes into the sub-folder src

OOP with Java Thomas Weise 7/10

Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class :
• source code goes into the sub-folder src
• compiled files go into the sub-folder bin

OOP with Java Thomas Weise 7/10

Eclipse File Structure

• By default, Eclipse separates the source code *.java files from the

compiled class files *.class :
• source code goes into the sub-folder src
• compiled files go into the sub-folder bin

• Eclipse creates two more files, .project and .classpath (sometimes

also a .gitignore) in the root folder of the project. Let’s ignore
them for now

OOP with Java Thomas Weise 7/10

IDEs

• Like most IDEs, Eclipse has a wide set of tools that make a
programmer more productive

OOP with Java Thomas Weise 8/10

IDEs

• Like most IDEs, Eclipse has a wide set of tools that make a
programmer more productive, including:

1 syntax highlighting
2 refactoring
3 compilation of code while you type it
4 auto-completion
5 debugger
6 several other tools that we will use, such as Maven, git, JUnit. . .

OOP with Java Thomas Weise 8/10

IDEs

• Like most IDEs, Eclipse has a wide set of tools that make a
programmer more productive, including:

1 syntax highlighting
2 refactoring
3 compilation of code while you type it
4 auto-completion
5 debugger
6 several other tools that we will use, such as Maven, git, JUnit. . .

• In software engineering, we always use IDEs

OOP with Java Thomas Weise 8/10

Summary

1 We have learned what an IDE like Eclipse is.

2 We have downloaded and installed Eclipse.

3 We have created a first Eclipse project.

4 We have compiled and executed a program with Eclipse.

5 We have learned about the basic file structure of Eclipse projects.

OOP with Java Thomas Weise 9/10

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization

Shushan District, Hefei, Anhui,
China

OOP with Java Thomas Weise 10/10

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction to Eclipse
	Eclipse

	Installation
	Installation

	A First Eclipse Project
	Our First Program (revisited)
	Hello World
	Eclipse File Structure

	Summary
	IDEs
	Summary

