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ˆ The metal is heated to, like0:4 * melting temperature

ˆ Ions inside metal can move around

ˆ Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal ! metal becomes more stable

ˆ Due to their movement, ions may temporarily assume positions of
high energy

ˆ An initial, brittle crystal structure is transformed to a much better
con�guration by stepping over good and bad states
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each such state, there belong many possible micro-states

ˆ A system at temperatureT has the probabilitye
� E

k B � T to be in a
macro state with energyE.

kb = 1 :380650524� 10� 27J=K is the Boltzmann constant (1)
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Metropolis Algorithm

ˆ Metropolis[2] wants to simulate this process.

ˆ First, we need to understand: What is temperatureT?

ˆ Each material consists of many di�erent particles

ˆ The micro-state of a material is the tuple of the positions and
velocities of all particles { this is uninteresting

ˆ With each such state, there is an energyE associated: If many the
particles move around quickly, the energyE is high

ˆ Now we consider a value ofE as a macro-state of the system and to
each such state, there belong many possible micro-states

ˆ A system at temperatureT has the probabilitye
� E

k B � T to be in a
macro state with energyE.

ˆ In other words: The higher the temperature, the higher the chance to
be in a high-energy state
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(
e
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1 otherwise
(2)
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Metaheuristic Optimization Thomas Weise 9/32



Section Outline

1 Introduction

2 Metropolis Algorithms

3 Simulated Annealing

4 Temperature Scheduling

5 Implementation

6 Summary

Metaheuristic Optimization Thomas Weise 10/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ

ˆ

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ Simulated Annealing = hill climbing + sometimes accept worsestates
following Metropolis' method[8{11]

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing
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low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ Simulated Annealing = hill climbing + sometimes accept worsestates
following Metropolis' method[8{11]

ˆ ) lower risk of premature convergence
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Simulated Annealing

ˆ Modi�cation of the Metropolis procedure:

� E = f (x0) � f (x) (3)

ˆ � E is the objective value di�erence between the new (x0) and old
candidate solution (x)

P(� E ) =

(
e� � E

T if � E > 0
1 otherwise

(4)

ˆ P(� E ) is the probability that the new candidate solutionx0 will be
accepted

ˆ kB is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

ˆ TemperatureT reduced according to a speci�c schedule over the
iterations
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pbest  � simulatedAnnealing( f )

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t : the current time index
Data: � E : the energy (objective value) di�erence of thepcur:x and pnew:x
Output: pbest: the best individual ever discovered

begin
pcur  � create and evaluate initial solution
pbest  � pcur

t  � 1
while : shouldTerminate do

pnew  � derive new solution frompcur

� E  � f (pnew) � f (pcur)
if � E � 0 then

pcur  � pnew

if f (pcur:x) < f (pbest:x) then pbest  � pcur

else
T  � getTemperature(t)

if f randomly from [0; 1]g < e � � E
T then pcur  � pnew

t  � t + 1

return pbest
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pbest  � simulatedAnnealing( f )

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t : the current time index
Data: � E : the energy (objective value) di�erence of thepcur:x and pnew:x
Output: pbest: the best individual ever discovered

begin
pcur:g  � create()
pcur:x  � gpm(pcur:g)
pcur:y  � f (pcur:x)
pbest  � pcur

t  � 0
while : shouldTerminate do

pnew:g  � mutation( pcur:g)
pnew:x  � gpm(pnew:g)
pnew:y  � f (pnew:x)
� E  � pnew:y � pcur:y
if � E � 0 then

pcur  � pnew

if pcur:y < p best:y then pbest  � pcur

else
T  � getTemperature(t)

if f randomly from [0; 1]g < e � � E
T then pcur  � pnew

t  � t + 1

return pbest
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Temperature Scheduling

De�nition (Temperature Schedule)
The temperature schedule de�nes how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7! R+ maps the current iteration indext to a
(positive) real temperature valueT. [12, 13]
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Temperature Scheduling

De�nition (Temperature Schedule)
The temperature schedule de�nes how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7! R+ maps the current iteration indext to a
(positive) real temperature valueT. [12, 13]

getTemperature(t) 2 (0; + 1 ) 8t 2 N1 (5)

getTemperature(0) = T start > 0 (6)

lim
t ! + 1

getTemperature(t) = 0 (7)

The temperature schedule allows for a smooth transition of SA algorithm
behavior from \like Random Walk" (high temperature) to \like hill
climbing" (low temperature).
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Temperature Scheduling
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getTemperature ln (t) =
�

T start if t < 3
T start =ln t otherwise

getTemperatureexp (t) = (1 � � ) t � T start

getTemperaturepoly (t) =
�

1 �
t
t

� �

� T start



Temperature Scheduling: Setup

ˆ Logarithmic Scheduling
ˆ T start : use a value larger than the greatest di�erence of the objective

value of a local minimum and its best neighboring candidate solution
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Temperature Scheduling: Setup

ˆ Logarithmic Scheduling
ˆ T start : use a value larger than the greatest di�erence of the objective

value of a local minimum and its best neighboring candidate solution

ˆ Exponential Scheduling
ˆ determine� 2 (0; 1) by experiment

ˆ Polynomial Scheduling
ˆ � is a constant, maybe1, 2, or 4
ˆ an upper iteration limitt after which the temperature should become

zero

ˆ Adaptive Scheduling
ˆ Example:T = � � (f (pcur:x) � f (~x)) everym steps,� determined by

experiment

ˆ Often: Adjust temperature only everym 2 N1 steps

Metaheuristic Optimization Thomas Weise 18/32



Temperature Scheduling: Convergence

ˆ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems
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Temperature Scheduling: Convergence

ˆ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

ˆ . . . but the number of function evaluations needed to �nd the
optimum with P ! 1 is still higher than what an exhaustive
enumeration would need[14]

ˆ . . . which makes sense because otherwise we could solve
N P -complete problems e�ciently and exactly with SA[15]. . .

ˆ Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

ˆ Simulated Annealing turns into Simulated Quenching[13]

ˆ Here: Restarting good in order avoid premature convergence
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Implementation

ˆ Add a new interface for temperature scheduling
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Temperature Scheduling

From the programmer's perspective, we can say:

Listing: Temperature SchedulegetTemperature

public interface ITemperatureSchedule {

public abstract double getTemperature ( f inal int t ) ;
}
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Simulated Annealing Algorithm

Listing: Simulated Annealing

public class SA <G, X> extends Optimizat ionAlgori thm <G, X> {
public Individual <G, X> solve ( f inal IObject iveFunct ion <X> f) {

Individual <G, X> pcur , pnew , pbest ;
double deltaE , T;
int t ;

pcur = new Individual < >() ;
pnew = new Individual < >() ;
pbest = new Individual < >() ;

t = 1;
pcur .g = this . nul lary . create ( this . random );
pcur .x = this .gpm.gpm(pcur .g) ;
pcur .v = f . compute (pcur .x) ;
pbest . assign (pcur ) ;

while (!( this . terminat ion . shouldTerminate () ) ) {
pnew .g = this . unary . mutate (pcur .g , this . random );
pnew .x = this .gpm.gpm(pnew.g) ;
pnew .v = f . compute (pnew.x) ;
deltaE = (pnew.v - pcur .v) ;

if ( deltaE <= 0d) {
pcur . assign (pnew);
if ( pnew .v < pbest .v) {

pbest . assign (pnew);
}

} else {
T = this . temperature . getTemperature ( t ) ;
if ( this . random . nextDouble () < Math .exp (- deltaE / T)) {

pcur . assign (pnew);
}

}
t++;

}
return pbest ;

}
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The Logarithmic Temperature Schedule

Listing: The Logarithmic Temperature Schedule

public class Logari thmic implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

if ( t < 3) {
return this .Ts ;

}
return ( this .Ts / Math . log ( t ) ) ;

}
}
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The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponent ial implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

return ( this .Ts * Math .pow ((1d - this . epsi lon ) , t ) ) ;
}

}
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The Polynomial Temperature Schedule

Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

return ( this .Ts * Math .pow(Math .max (0d , (1d - ( t / this . tmax ))) , //
this . alpha )) ;

}
}
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ˆ Annealing is a physical process in metallurgy where low-energy
con�gurations are found

ˆ This process is simulated with the Metropolis algorithm

ˆ which serves as role model for an optimization algorithm: simulated
annealing

ˆ Di�erent temperature schedules

ˆ Convergence to global optimum is guaranteed for many problems and
logarithmic schedules . . . but very slow

ˆ Simulated quenching is faster but loses guaranteed optimality
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Caspar David Friedrich, !Der Wanderer über dem Nebelmeer", 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

"""" ""
Thank you

Thomas Weise [d k � ]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization

Shushan District, Hefei, Anhui,
China

Metaheuristic Optimization Thomas Weise 29/32

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristic Optimization Thomas Weise 30/32



Bibliography I

1. F. J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon Materials Series.
Amsterdam, The Netherlands: Elsevier Science Publishers B.V., 2004. ISBN 0080441645 and 9780080441641. URL
http://books.google.de/books?id=52Gloa7HxGsC .

2. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Nicholas Rosenbluth, Augusta H. Teller, and Edward Teller.
Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087{1092, June 1953.
doi: 10.1063/1.1699114 . URL http://sc.fsu.edu/ ~beerli/mcmc/metropolis-et-al-1953.pdf .

3. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine,
220(4598):671{680, May 13, 1983. doi: 10.1126/science.220.4598.671 . URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optim ization.pdf .

4. Vladim��r �Cern�y. Thermodynamical approach to the traveling salesman problem: An e�cient simulation algorithm. Journal
of Optimization Theory and Applications , 45(1):41{51, January 1985. doi: 10.1007/BF00940812 . URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesma n.pdf . Communicated by S. E. Dreyfus. Also: Technical
Report, Comenius University, Mlynsk�a Dolina, Bratislava, Czechoslovakia, 1982.

5. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson.Monte carlo techniques in code optimization. ACM SIGMICRO
Newsletter, 13(4):143{148, December 1982.

6. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson.Monte carlo techniques in code optimization. In International
Symposium on Microarchitecture { Proceedings of the 15th Annual Workshop on Microprogramming (MICRO 15), pages
143{146, Palo Alto, CA, USA, October 5{7, 1982. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics
Engineers).

7. Martin Pincus. A monte carlo method for the approximate solution of certain types of constrained optimization problems.
Operations Research (Oper. Res.), 18(6):1225{1228, November{December 1970.

8. Peter Salamon, Paolo Sibani, and Richard Frost.Facts, Conjectures, and Improvements for Simulated Annealing, volume 7
of SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics (SIAM), 2002. ISBN 0898715083 and 9780898715088. URL
http://books.google.de/books?id=jhAldlYvClcC .

9. Peter J. M. van Laarhoven and Emile H. L. Aarts, editors. Simulated Annealing: Theory and Applications, volume 37 of
Mathematics and its Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987. ISBN 90-277-2513-6,
978-90-277-2513-4, and 978-90-481-8438-5. URLhttp://books.google.de/books?id=-IgUab6Dp_IC .

Metaheuristic Optimization Thomas Weise 31/32



Bibliography II

10. Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research Notes in Arti�cial Intelligence. London,
UK: Pitman, 1987. ISBN 0273087711, 0934613443, 9780273087717, and 978-0934613446. URL
http://books.google.de/books?id=edfSSAAACAAJ .

11. James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control {
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience, �rst
edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 978-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f66OIvvkKnAC .

12. William T. Vettering, Saul A. Teukolsky, William H. Press , and Brian P. Flannery. Numerical Recipes in C++ { Example
Book { The Art of Scienti�c Computing . Cambridge, UK: Cambridge University Press, second edition, February 7, 2002.
ISBN 0521750342 and 978-0521750349. URLhttp://books.google.de/books?id=gwijz-OyIYEC .

13. Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and Computer Modelling, 18(11):29{57,
November 1993. doi: 10.1016/0895-7177(93)90204-C . URL http://www.ingber.com/asa93_sapvt.pdf .

14. Andreas Nolte and Rainer Schrader. A note on the �nite time behaviour of simulated annealing. Mathematics of
Operations Research (MOR), 25(3):476{484, August 2000. doi: 10.1287/moor.25.3.476.12211 . URL
http://www.zaik.de/ ~paper/unzip.html?file=zaik1999-347.ps . Revised version from March 1999.

15. Edgar Anderson. The irises of the gasp�e peninsula.Bulletin of the American Iris Society, 59:2{5, 1935.

Metaheuristic Optimization Thomas Weise 32/32


	Outline
	Introduction
	Section Outline
	Introduction: Annealing
	Introduction: Annealing
	Introduction: Annealing

	Metropolis Algorithms
	Section Outline
	Metropolis Algorithm
	Metropolis Algorithm

	Simulated Annealing
	Section Outline
	Simulated Annealing
	Simulated Annealing

	Temperature Scheduling
	Section Outline
	Temperature Scheduling
	Temperature Scheduling
	Temperature Scheduling: Setup
	Temperature Scheduling: Convergence

	Implementation
	Section Outline
	Implementation
	Temperature Scheduling
	Simulated Annealing Algorithm
	The Logarithmic Temperature Schedule
	The Exponential Temperature Schedule
	The Polynomial Temperature Schedule

	Summary
	Section Outline
	Summary

	Presentation End

