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Introduction: Annealing §\

Cold working metal causes/increases defects in crystal stmec

After cold working,annealing" is performed

The metal is heated to, liké:4 * melting temperature

lons inside metal can move around

Metal is slowly cooled down, ions assume low-energy, stable iposit
in crystal! metal becomes more stable

Due to their movement, ions may temporarily assume positions of
high energy

An initial, brittle crystal structure is transformed to a noh better
con guration by stepping over good and bad states

Metaheuristic Optimization Thomas Weise 5/32



metal structure with defects
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Metropolis®” wants to simulate this process.
First, we need to understand: What is temperatufe
Each material consists of many di erent particles

The micro-state of a material is the tuple of the positions and
velocities of all particles { this is uninteresting
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Metropolis®” wants to simulate this process.

First, we need to understand: What is temperatufe

Each material consists of many di erent particles

The micro-state of a material is the tuple of the positions and
velocities of all particles { this is uninteresting

With each such state, there is an ener§yassociated: If many the
particles move around quickly, the ener@yis high

Now we consider a value & as a macro-state of the system and to
each such state, there belong many possible micro-states

E
A system at temperaturd has the probabilitye *s T to be in a
macro state with energg.

kp, = 1:380650524 10 27J=K is the Boltzmann constant Q)
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Metropolis®? wants to simulate this process.
First, we need to understand: What is temperatufe
Each material consists of many di erent particles

The micro-state of a material is the tuple of the positions and
velocities of all particles { this is uninteresting

With each such state, there is an ener§yassociated: If many the
particles move around quickly, the ener@yis high

Now we consider a value & as a macro-state of the system and to
each such state, there belong many possible micro-states

E
A system at temperaturd has the probabilitye ks T to be in a
macro state with energg.

In other words: The higher the temperature, the higher the charo
be in a high-energy state

Metaheuristic Optimization Thomas Weise 8/32
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" Based on this, Metropolis' develops a simulation for annealing in
form of a Monte Carlo algorithm

B be the current con guration of the ions andos’ a possible new
con guration, T be the temperature (decreasing over time)

E=E pod E(po9 1)

" E is the energy di ererace between the states
E

e ks T if E>0 (2)
1 otherwise

P( E)=

" P( E) is the probability that the new stateoos’ will be accepted
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Metropolis' simulatiori?’ shows how physical systems nd states of
low energy.

The (simulated) physical system escapes local optima by pitcg
worse solutions from time to time.

This could be a remedy for the premature convergence problem bf
climbing!

Idea developed by Kirkpatrick et af, Cerry !, Jacobs et al® ¢, and
Pincus” independently:

Simulated Annealing = hill climbing + sometimes accept worstates
following Metropolis' method*

") lower risk of premature convergence

Metaheuristic Optimization Thomas Weise 11/32
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" Modi cation of the Metropolis procedure:

E=f(Y) ) 3

E is the objective value di erence between the new’(and old
candidate solution X) (
- if E>O0

e
P( E)=
( ) 1 otherwise

(4)

P( E) is the probability that the new candidate solutior will be
accepted

kg is eliminated from the equation since it is useless for optirtitza
and just makes the acceptance probability of solutions with wgors
objective values hard to understand

TemperatureT reduced according to a speci ¢ schedule over the
iterations

Metaheuristic Optimization Thomas Weise 12/32



Pbest simulatedAnnealing(f )

— Input: f: the objective function to be minimized
Data: : the newly generated individual
Data: pe.: the point currently investigated
Data: T: the temperature of the system which is decreased over time
Data: t: the current time index
Data: E: the energy (objective value) di erence of they...:x and X
Output: prest: the best individual ever discovered

begin ~ .. . . .
por  create and evaluate initial solution This is the simpli ed algorithm, see

Poest P next slide for full algorithm.

while : shouldTerminate do
derive new solution fromp,,
E f (Prew)  f (Peur)
if E Othen
Poeur
if f(PeurX) <f (Ppest:X) then Prest Peur

else
T getTemperature (t)

if frandomly from|[0;1]g<e - then Peur

Lt t+l

return Poest
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— Input: f: the objective function to be minimized
Data: : the newly generated individual
Data: pe.: the point currently investigated

Data: T: the temperature of the system which is decreased over time

Data: t: the current time index
Data:

Output: prest: the best individual ever discovered

begin
Peur create and evaluate initial solution
Pbest Peu
t 1

while : shouldTerminate do ~
derive new solution fromp,,

E: the energy (objective value) di erence of they.,:x and X

This is the simpli ed algorithm, see
next slide for full algorithm.

Temperature schedule

(5o ) i) getTemperature: How the
i en q p
o temperatuEeT decreases over time
if f(Peurix) <f (Poest:X) then poest Peur E
- e T if E>O0
else P( E) = .
T getTemperature(t) 1 otherwise
if frandomly from|[0;1]g<e - then Peur
|t t+1
| retumn poest
v
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Pbest simulatedAnnealing(f )

Input: f: the objective function to be minimized

Data: : the newly generated individual

Data: pc.: the point currently investigated

Data: T: the temperature of the system which is decreased over time
Data: t: the current time index

Data: E: the energy (objective value) di erence of they...:x and X
Output: prest: the best individual ever discovered

begin

Peur:g create()

PeurX 9pM(Peurig)

peurty  f (PeuriX)

Poest Peur

t

0 ~ Full algorithm

while : shouldTerminate do
‘g mutation( peur:g)
X gpM(Prenig)

y f( X)
E Y Peurly
if E Othen
Peur

if Py < Poesty then peest Peur

else
T getTemperature(t)

if frandomly from[0;1]g<e = then Peur

|t t+1

return Poest
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Temperature Scheduling %()

De nition (Temperature Schedule)

The temperature schedule de nes how the temperature partend in the
Simulated Annealing process is set. The operator

getTemperature: N; 7! R* maps the current iteration index to a
(positive) real temperature valué . ** *?

getTemperature(t) 2 (0;+1 ) 8t 2 Ng (5)
getTemperature(0) Tetat > 0 (6)
tIIir+n1 getTemperature(t) 0 (7)

The temperature schedule allows for a smooth transition of Sgoathm
behavior from \like Random Walk" (high temperature) to \like hill
climbing" (low temperature).

Metaheuristic Optimization Thomas Weise 16/32



getTemperaturey, (t)

T start ift< 3
Tstart =Int  otherwis

. getTemperaturee, (1) = (1 )" Tetan
08T} ~
T tT t H = 1 L o7
X getTemperaturepoy (t) = : start
0.6Ts| .\'\_ linear scaling
Voo N . (i.e., polynomial with o=1)
AN "4 \\.
exponentially '~
. ponen "
0.4T; / ...... . with £=0.025 .
logarithmically
0.2Tg polynomial .
Tl with =2
exponentially el
withe=0.05 Tt :
0 20 40 60 80 t 100
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" an upper iteration limitt after which the temperature should become
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Logarithmic Scheduling

" Tsart : USe a value larger than the greatest di erence of the objective
value of a local minimum and its best neighboring candidate totu

" determine 2 (0;1) by experiment
" Polynomial Scheduling
is a constant, maybd, 2, or 4
" an upper iteration limitt after which the temperature should become
zero
" Adaptive Scheduling
" Example:T = (f (peur:x) (%)) everym steps, determined by
experiment
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Logarithmic Scheduling

" Tsart : USe a value larger than the greatest di erence of the objective
value of a local minimum and its best neighboring candidate totu

" determine 2 (0;1) by experiment
" Polynomial Scheduling
is a constant, maybd, 2, or 4
" an upper iteration limitt after which the temperature should become
zero
" Adaptive Scheduling
" Example:T = (f (peur:x) (%)) everym steps, determined by
experiment

Often: Adjust temperature only evemn 2 N; steps
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Metaheuristic Optimization Thomas Weise 19/32



Temperature Scheduling: Convergence %\

1AQ

" If temperature decreases slowly (e.g., logarithmically), cengence to

the global optimum has been proven for various optimization probler

... but the number of function evaluations needed to nd the
optimum with P ! 1 is still higher than what an exhaustive
enumeration would need’

~ ...which makes sense because otherwise we could solve

N P -complete problems e ciently and exactly with SK&I. ..

Metaheuristic Optimization Thomas Weise 19/32



Temperature Scheduling: Convergence %\

1AQ2

" If temperature decreases slowly (e.g., logarithmically), cengence to
the global optimum has been proven for various optimization probler

... but the number of function evaluations needed to nd the
optimum with P ! 1 is still higher than what an exhaustive
enumeration would need’

...which makes sense because otherwise we could solve

N P -complete problems e ciently and exactly with SK&I. ..

Faster cooling schedules (e.g., exponential ones) lose guardntee
convergence but progress much faster

~ Simulated Annealing turns into Simulated Quenchitg

Metaheuristic Optimization Thomas Weise 19/32



Temperature Scheduling: Convergence %\

1AQ2

If temperature decreases slowly (e.g., logarithmically), cengence to
the global optimum has been proven for various optimization probler

... but the number of function evaluations needed to nd the
optimum with P ! 1 is still higher than what an exhaustive
enumeration would need’

...which makes sense because otherwise we could solve
N P -complete problems e ciently and exactly with SK&I. ..

Faster cooling schedules (e.g., exponential ones) lose guardntee
convergence but progress much faster

Simulated Annealing turns into Simulated Quenchitig
Here: Restarting good in order avoid premature convergence

Metaheuristic Optimization Thomas Weise 19/32
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Add a new interface for temperature scheduling

" Implement Simulated Annealing according to the algorithm
~ Implement some temperature schedules
Test




Temperature Scheduling %\’

From the programmer's perspective, we can say:

Listing: Temperature Schedule:

public interface ITemperatureSchedule {

public abstract double getTemperature( final int t);

}

Metaheuristic Optimization Thomas Weise 22/32



Simulated Annealing Algorithm §

Listing: Simulated Anneal

public class SA<G, X>extends OptimizationAlgorithm<G, X> {
public Individual<G, X> solve( final IObjectiveFunction<X> f) {
Individual<G, X> pcur, pnew, pbest;
double deltaE, T;
int t;

pecur = new Individual <>();
pnew = new Individual <>();
pbest = new Individual <>();

=
pecur.g this .nullary.create( this .random);
peur.x this .gpm.gpm(pcur.g);

pcur.v = f.compute(pcur.x);
pbest.assign(pcur);

while (!( this .termination.shouldTerminate())) {
pnew.g this .unary.mutate(pcur.g, this .random);
pnew.x this .gpm.gpm(pnew.g);
pnew.v f.compute(pnew.x);
deltaE = (pnew.v - pcur.v);

if (deltaE <= 0d) {
pcur.assign(pnew);
if (pnew.v < pbest.v) {
pbest.assign(pnew);

} else {
T = this .temperature.getTemperature(t);
if (this .random.nextDouble() < Math.exp(-deltaE / T)) {
pcur.assign(pnew);
}
}

te+;
return pbest;

) —
} Metaheuristic Optimization Thomas Weise 23/32




The Logarithmic Temperature Schedule %\’
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Listing: The Logarithmic Temperature Schedule

public class Logarithmic implements ITemperatureSchedule {
public double getTemperature( final int t) {

if (t < 3) {
return this .Ts;
}
return (this .Ts / Math.log(t));

}
}

Metaheuristic Optimization Thomas Weise 24/32



The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponential implements ITemperatureSchedule {
public double getTemperature( final int t) {
return (this .Ts * Math.pow((1d - this .epsilon), t));
}
}

Metaheuristic Optimization Thomas Weise 25/32



The Polynomial Temperature Schedule %\’

Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {
public double getTemperature( final int t) {
return (this .Ts * Math.pow(Math.max(0d, (1d - (t / this .tmax))), //
this .alpha));

Metaheuristic Optimization Thomas Weise 26/32
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con gurations are found

This process is simulated with the Metropolis algorithm

which serves as role model for an optimization algorithm: sirtada
annealing

Di erent temperature schedules

Convergence to global optimum is guaranteed for many problems a
logarithmic schedules ... but very slow
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Summary %\

Annealing is a physical process in metallurgy where lowgyner
con gurations are found

This process is simulated with the Metropolis algorithm

which serves as role model for an optimization algorithm: sirtada
annealing

Di erent temperature schedules

Convergence to global optimum is guaranteed for many problems a
logarithmic schedules ... but very slow

Simulated quenching is faster but loses guaranteed optimality

Metaheuristic Optimization Thomas Weise 28/32



Thank you

Thomas Weised k ]
tweise@hfuu.edu.c
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

aspar David Friedric} DWd bdmNblmEe ,1818
hp/lnw\kpd g/wk/w ndere n ve_t _of_Fog



mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn




Bibliography |

W

1AQ

1. F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena Pergamon Materials Series.
Amsterdam, The Netherlands: Elsevier Science Publishers B.., 2004. ISBN 0080441645 and 9780080441641. URL
http://books.google.de/books?id=52Gloa7HxGsC

2. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Nicholas Rosenbluth, Augusta H. Teller, and Edward Teller.
Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6):1087{1092, June 1953.
doi: 10.1063/1.1699114 . URL http://sc.fsu.edu/ ~beerli/mecmc/metropolis-et-al-1953.pdf

3. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine
220(4598):671{680, May 13, 1983. doi: 10.1126/science.220.4598.671 . URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optim ization.pdf

4. Vladimr Cerry. Thermodynamical approach to the traveling salesman problem: An e cient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41{51, January 1985. doi: 10.1007/BF00940812 . URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesma n.pdf . Communicated by S. E. Dreyfus. Also: Technical
Report, Comenius University, Mlynsla Dolina, Bratislava, Czechoslovakia, 1982.

5. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth WilsonMonte carlo techniques in code optimization. ACM SIGMICRO
Newsletter, 13(4):143{148, December 1982.

6. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth WilsonMonte carlo techniques in code optimization. In International
Symposium on Microarchitecture { Proceedings of the 15th Annual Workshop on Microprogramming (MICRO 15), pages
143{146, Palo Alto, CA, USA, October 5{7, 1982. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics
Engineers).

7. Martin Pincus. A monte carlo method for the approximate solution of certain types of constrained optimization problems.
Operations Research (Oper. Res,)18(6):1225{1228, November{December 1970.

8. Peter Salamon, Paolo Sibani, and Richard Frost.Facts, Conjectures, and Improvements for Simulated Annedhg, volume 7
of SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics (SIAM), 2002. ISBN 0898715083 and 978(0898715088. URL
http://books.google.de/books?id=jhAldIYvClcC

9. Peter J. M. van Laarhoven and Emile H. L. Aarts, editors. Simulated Annealing: Theory and Applications, volume 37 of
Mathematics and its Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987. ISBN 90-277-2513-6,
978-90-277-2513-4, and 978-90-481-8438-5. URLhttp://books.google.de/books?id=-IgUab6Dp_IC

Metaheuristic Optimization Thomas Weise 31/32



Bibliography I

W

1AQ

10. Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing Research Notes in Arti cial Intelligence. London,
UK: Pitman, 1987. ISBN 0273087711, 0934613443, 978027308717, and 978-0934613446. URL
http://books.google.de/books?id=edfSSAAACAAJ

11. James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control {
Wiley-Interscience Series in Discrete Mathematics and Opimization. Chichester, West Sussex, UK: Wiley Intersciene, rst
edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 98-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f660IvwvkKnAC

12. William T. Vettering, Saul A. Teukolsky, William H. Press , and Brian P. Flannery. Numerical Recipes in C++ { Example
Book { The Art of Scienti c Computing . Cambridge, UK: Cambridge University Press, second editin, February 7, 2002.
ISBN 0521750342 and 978-0521750349. URLhttp://books.google.de/books?id=gwijz-OylYEC

13. Lester Ingber. Simulated annealing: Practice versus thory. Mathematical and Computer Modelling, 18(11):29{57,
November 1993. doi: 10.1016/0895-7177(93)90204-C . URL http://www.ingber.com/asa93_sapvt.pdf

14. Andreas Nolte and Rainer Schrader. A note on the nite time behaviour of simulated annealing. Mathematics of
Operations Research (MOR) 25(3):476{484, August 2000. doi: 10.1287/moor.25.3.476.12211 . URL
http://lwww.zaik.de/  ~paper/unzip.html?file=zaik1999-347.ps . Revised version from March 1999.

15. Edgar Anderson. The irises of the gasg peninsula.Bulletin of the American Iris Society, 59:2{5, 1935.

Metaheuristic Optimization Thomas Weise 32/32



	Outline
	Introduction
	Section Outline
	Introduction: Annealing
	Introduction: Annealing
	Introduction: Annealing

	Metropolis Algorithms
	Section Outline
	Metropolis Algorithm
	Metropolis Algorithm

	Simulated Annealing
	Section Outline
	Simulated Annealing
	Simulated Annealing

	Temperature Scheduling
	Section Outline
	Temperature Scheduling
	Temperature Scheduling
	Temperature Scheduling: Setup
	Temperature Scheduling: Convergence

	Implementation
	Section Outline
	Implementation
	Temperature Scheduling
	Simulated Annealing Algorithm
	The Logarithmic Temperature Schedule
	The Exponential Temperature Schedule
	The Polynomial Temperature Schedule

	Summary
	Section Outline
	Summary

	Presentation End

