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ˆ The metal is heated to, like0:4 * melting temperature

ˆ Ions inside metal can move around

ˆ Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal ! metal becomes more stable

ˆ Due to their movement, ions may temporarily assume positions of
high energy

ˆ An initial, brittle crystal structure is transformed to a much better
con�guration by stepping over good and bad states
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each such state, there belong many possible micro-states

ˆ A system at temperatureT has the probabilitye
� E

k B � T to be in a
macro state with energyE.

kb = 1 :380650524� 10� 27J=K is the Boltzmann constant (1)
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Metropolis Algorithm

ˆ Metropolis[2] wants to simulate this process.

ˆ First, we need to understand: What is temperatureT?

ˆ Each material consists of many di�erent particles

ˆ The micro-state of a material is the tuple of the positions and
velocities of all particles { this is uninteresting

ˆ With each such state, there is an energyE associated: If many the
particles move around quickly, the energyE is high

ˆ Now we consider a value ofE as a macro-state of the system and to
each such state, there belong many possible micro-states

ˆ A system at temperatureT has the probabilitye
� E

k B � T to be in a
macro state with energyE.

ˆ In other words: The higher the temperature, the higher the chance to
be in a high-energy state
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(
e
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1 otherwise
(2)
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Metaheuristic Optimization Thomas Weise 9/32



Section Outline

1 Introduction

2 Metropolis Algorithms

3 Simulated Annealing

4 Temperature Scheduling

5 Implementation

6 Summary

Metaheuristic Optimization Thomas Weise 10/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ

ˆ

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing

ˆ Metropolis' simulation[2] shows how physical systems �nd states of
low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ Simulated Annealing = hill climbing + sometimes accept worsestates
following Metropolis' method[8{11]

ˆ

Metaheuristic Optimization Thomas Weise 11/32



Simulated Annealing
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low energy.

ˆ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

ˆ This could be a remedy for the premature convergence problem of hill
climbing!

ˆ Idea developed by Kirkpatrick et al.[3], �Cern�y [4], Jacobs et al.[5, 6], and
Pincus[7] independently:

ˆ Simulated Annealing = hill climbing + sometimes accept worsestates
following Metropolis' method[8{11]

ˆ ) lower risk of premature convergence
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Simulated Annealing

ˆ Modi�cation of the Metropolis procedure:

� E = f (x0) � f (x) (3)

ˆ � E is the objective value di�erence between the new (x0) and old
candidate solution (x)

P(� E ) =

(
e� � E

T if � E > 0
1 otherwise

(4)

ˆ P(� E ) is the probability that the new candidate solutionx0 will be
accepted

ˆ kB is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

ˆ TemperatureT reduced according to a speci�c schedule over the
iterations
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pbest  � simulatedAnnealing( f )

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t : the current time index
Data: � E : the energy (objective value) di�erence of thepcur:x and pnew:x
Output: pbest: the best individual ever discovered

begin
pcur  � create and evaluate initial solution
pbest  � pcur

t  � 1
while : shouldTerminate do

pnew  � derive new solution frompcur

� E  � f (pnew) � f (pcur)
if � E � 0 then

pcur  � pnew

if f (pcur:x) < f (pbest:x) then pbest  � pcur

else
T  � getTemperature(t)

if f randomly from [0; 1]g < e � � E
T then pcur  � pnew

t  � t + 1

return pbest
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pbest  � simulatedAnnealing( f )

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t : the current time index
Data: � E : the energy (objective value) di�erence of thepcur:x and pnew:x
Output: pbest: the best individual ever discovered

begin
pcur:g  � create()
pcur:x  � gpm(pcur:g)
pcur:y  � f (pcur:x)
pbest  � pcur

t  � 0
while : shouldTerminate do

pnew:g  � mutation( pcur:g)
pnew:x  � gpm(pnew:g)
pnew:y  � f (pnew:x)
� E  � pnew:y � pcur:y
if � E � 0 then

pcur  � pnew

if pcur:y < p best:y then pbest  � pcur

else
T  � getTemperature(t)

if f randomly from [0; 1]g < e � � E
T then pcur  � pnew

t  � t + 1

return pbest
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Temperature Scheduling

De�nition (Temperature Schedule)
The temperature schedule de�nes how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7! R+ maps the current iteration indext to a
(positive) real temperature valueT. [12, 13]
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Temperature Scheduling

De�nition (Temperature Schedule)
The temperature schedule de�nes how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7! R+ maps the current iteration indext to a
(positive) real temperature valueT. [12, 13]

getTemperature(t) 2 (0; + 1 ) 8t 2 N1 (5)

getTemperature(0) = T start > 0 (6)

lim
t ! + 1

getTemperature(t) = 0 (7)

The temperature schedule allows for a smooth transition of SA algorithm
behavior from \like Random Walk" (high temperature) to \like hill
climbing" (low temperature).
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Temperature Scheduling
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getTemperature ln (t) =
�

T start if t < 3
T start =ln t otherwise

getTemperatureexp (t) = (1 � � ) t � T start

getTemperaturepoly (t) =
�

1 �
t
t

� �

� T start



Temperature Scheduling: Setup

ˆ Logarithmic Scheduling
ˆ T start : use a value larger than the greatest di�erence of the objective

value of a local minimum and its best neighboring candidate solution
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Temperature Scheduling: Setup

ˆ Logarithmic Scheduling
ˆ T start : use a value larger than the greatest di�erence of the objective

value of a local minimum and its best neighboring candidate solution

ˆ Exponential Scheduling
ˆ determine� 2 (0; 1) by experiment

ˆ Polynomial Scheduling
ˆ � is a constant, maybe1, 2, or 4
ˆ an upper iteration limitt after which the temperature should become

zero

ˆ Adaptive Scheduling
ˆ Example:T = � � (f (pcur:x) � f (~x)) everym steps,� determined by

experiment

ˆ Often: Adjust temperature only everym 2 N1 steps

Metaheuristic Optimization Thomas Weise 18/32



Temperature Scheduling: Convergence

ˆ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems
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Temperature Scheduling: Convergence

ˆ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

ˆ . . . but the number of function evaluations needed to �nd the
optimum with P ! 1 is still higher than what an exhaustive
enumeration would need[14]

ˆ . . . which makes sense because otherwise we could solve
N P -complete problems e�ciently and exactly with SA[15]. . .

ˆ Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

ˆ Simulated Annealing turns into Simulated Quenching[13]

ˆ Here: Restarting good in order avoid premature convergence
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Implementation

ˆ Add a new interface for temperature scheduling
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Temperature Scheduling

From the programmer's perspective, we can say:

Listing: Temperature SchedulegetTemperature

public interface ITemperatureSchedule {

public abstract double getTemperature ( f inal int t ) ;
}
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Simulated Annealing Algorithm

Listing: Simulated Annealing

public class SA <G, X> extends Optimizat ionAlgori thm <G, X> {
public Individual <G, X> solve ( f inal IObject iveFunct ion <X> f) {

Individual <G, X> pcur , pnew , pbest ;
double deltaE , T;
int t ;

pcur = new Individual < >() ;
pnew = new Individual < >() ;
pbest = new Individual < >() ;

t = 1;
pcur .g = this . nul lary . create ( this . random );
pcur .x = this .gpm.gpm(pcur .g) ;
pcur .v = f . compute (pcur .x) ;
pbest . assign (pcur ) ;

while (!( this . terminat ion . shouldTerminate () ) ) {
pnew .g = this . unary . mutate (pcur .g , this . random );
pnew .x = this .gpm.gpm(pnew.g) ;
pnew .v = f . compute (pnew.x) ;
deltaE = (pnew.v - pcur .v) ;

if ( deltaE <= 0d) {
pcur . assign (pnew);
if ( pnew .v < pbest .v) {

pbest . assign (pnew);
}

} else {
T = this . temperature . getTemperature ( t ) ;
if ( this . random . nextDouble () < Math .exp (- deltaE / T)) {

pcur . assign (pnew);
}

}
t++;

}
return pbest ;

}
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The Logarithmic Temperature Schedule

Listing: The Logarithmic Temperature Schedule

public class Logari thmic implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

if ( t < 3) {
return this .Ts ;

}
return ( this .Ts / Math . log ( t ) ) ;

}
}
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The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponent ial implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

return ( this .Ts * Math .pow ((1d - this . epsi lon ) , t ) ) ;
}

}
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The Polynomial Temperature Schedule

Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {
public double getTemperature ( f inal int t ) {

return ( this .Ts * Math .pow(Math .max (0d , (1d - ( t / this . tmax ))) , //
this . alpha )) ;

}
}
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ˆ Annealing is a physical process in metallurgy where low-energy
con�gurations are found

ˆ This process is simulated with the Metropolis algorithm

ˆ which serves as role model for an optimization algorithm: simulated
annealing

ˆ Di�erent temperature schedules

ˆ Convergence to global optimum is guaranteed for many problems and
logarithmic schedules . . . but very slow

ˆ Simulated quenching is faster but loses guaranteed optimality
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Caspar David Friedrich, !Der Wanderer über dem Nebelmeer", 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

"""" ""
Thank you

Thomas Weise [d k � ]
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