
Metaheuristic Optimization
6. Random Walk

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http:/iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http:/iao.hfuu.edu.cn

Outline

1 Random Walks

Metaheuristic Optimization Thomas Weise 2/12

w
e
b
s
it
e

Why do Hill Climbers work?

❼ Hill climbers work under the assumption that there is some structure
in the search space.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/12

Why do Hill Climbers work?

❼ Hill climbers work under the assumption that there is some structure
in the search space.

❼ The chance that a good solution is neighboring another good solution
should be higher than that it is surrounded by only bad solutions or at
a random location.

❼

❼

Metaheuristic Optimization Thomas Weise 3/12

Why do Hill Climbers work?

❼ Hill climbers work under the assumption that there is some structure
in the search space.

❼ The chance that a good solution is neighboring another good solution
should be higher than that it is surrounded by only bad solutions or at
a random location.

❼ Based on this idea, the hill climber generates modified copies of the
current solution and accepts them if they are better than the old
solution.

❼

Metaheuristic Optimization Thomas Weise 3/12

Why do Hill Climbers work?

❼ Hill climbers work under the assumption that there is some structure
in the search space.

❼ The chance that a good solution is neighboring another good solution
should be higher than that it is surrounded by only bad solutions or at
a random location.

❼ Based on this idea, the hill climber generates modified copies of the
current solution and accepts them if they are better than the old
solution.

❼ What would happen if we would always accept them?

Metaheuristic Optimization Thomas Weise 3/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼

❼

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

❼ Random walks [1–4] are also known as Drunkard’s walks

❼ Also do not utilize the information gathered during the search

❼ Start at a (random) location and take random steps

Metaheuristic Optimization Thomas Weise 4/12

Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/12

Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/12

1 create initial candidate
solution pbest (also store
it in pnew)

Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/12

1 create initial candidate
solution pbest (also store
it in pnew)

2 derive new solution pnew
from pnew

Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/12

1 create initial candidate
solution pbest (also store
it in pnew)

2 derive new solution pnew
from pnew

3 if pnew is better than
pbest, set pbest = pnew

Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/12

1 create initial candidate
solution pbest (also store
it in pnew)

2 derive new solution pnew
from pnew

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met

Random Walks

❼ Let us implement a random walk

Metaheuristic Optimization Thomas Weise 6/12

Random Walks

❼ Let us implement a random walk for

1 numerical optimization (over Rn) and for

Metaheuristic Optimization Thomas Weise 6/12

Random Walks

❼ Let us implement a random walk for

1 numerical optimization (over Rn) and for
2 combinatorial optimization (e.g., for TSP over permutations).

Metaheuristic Optimization Thomas Weise 6/12

Implementing the Random Walk

Listing: The Random Walk Algorithm

public class RandomWalk <G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

pnew.assign(pstar);

while (!(this.termination.shouldTerminate ())) {

pnew.g = this.unary.mutate(pnew.g, this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}

Metaheuristic Optimization Thomas Weise 7/12

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 8/12

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼

❼

❼

Metaheuristic Optimization Thomas Weise 8/12

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼

❼

Metaheuristic Optimization Thomas Weise 8/12

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼

Metaheuristic Optimization Thomas Weise 8/12

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼ Comparison with algorithms that do not use this information!

Metaheuristic Optimization Thomas Weise 8/12

Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼

❼

Metaheuristic Optimization Thomas Weise 9/12

Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼ Hence, their performance is much worse, similar to random sampling.

❼

Metaheuristic Optimization Thomas Weise 9/12

Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼ Hence, their performance is much worse, similar to random sampling.

❼ This means that the idea of expection some sort of “gradient” in the
search space towards better solutions is reasonable.

Metaheuristic Optimization Thomas Weise 9/12

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http:/iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 10/12

mailto:tweise@hfuu.edu.cn
mailto:http:/iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 11/12

Bibliography I

1. Karl Pearson. The problem of the random walk. Nature, 72:294, July 27, 1905. doi: 10.1038/072294b0.
2. William Feller. An Introduction to Probability Theory and Its Applications, Volume 1. Wiley Series in Probability and

Mathematical Statistics – Applied Probability and Statistics Section Series. Chichester, West Sussex, UK: Wiley Interscience,
3rd edition, 1968. ISBN 0471257087 and 978-0471257080. URL http://books.google.de/books?id=TkfeSAAACAAJ.

3. Barry D. Hughes. Random Walks and Random Environments: Volume 1: Random Walks. New York, NY, USA: Oxford
University Press, Inc., May 16, 1995. ISBN 0-19-853788-3 and 978-0-19-853788-5. URL
http://books.google.de/books?id=QhOen_t0LeQC.

4. George H. Weiss and Robert J. Rubin. Random Walks: Theory and Selected Applications, volume 52 of Advances in

Chemical Physics. Hoboken, NJ, USA: John Wiley & Sons, Inc., March 14, 2007. ISBN 9780470142769 and
9780471868453. doi: 10.1002/9780470142769.ch5.

Metaheuristic Optimization Thomas Weise 12/12

http://books.google.de/books?id=TkfeSAAACAAJ
http://books.google.de/books?id=QhOen_t0LeQC

	Outline
	Why do Hill Climbers work?
	Random Walks
	Random Walks
	Random Walks
	Random Walks
	Implementing the Random Walk
	When is optimization effective?
	Summary

	Presentation End
	Bibliography

