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Why do Hill Climbers work? %‘).

¢ Hill climbers work under the assumption that there is some structure
in the search space.

e The chance that a good solution is neighboring another good solution
should be higher than that it is surrounded by only bad solutions or at
a random location.

¢ Based on this idea, the hill climber generates modified copies of the
current solution and accepts them if they are better than the old
solution.

¢ What would happen if we would always accept them?
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Drest <— randomWalk( f)

Input: f: the objective function subject to minization
Input: [impiicit) should Terminate: the termination criterion
Data: pnew: the new solution to be tested
Output: ppest: the best individual ever discovered
begin
Dbest-g $— create()
Dbest-T — ZPM(Dpest.g)
Pbest-Y — f(pbesbx)
DPnew < Dbest
while —should Terminate do
Dnew-g — mutation(ppew-g)
Drew-T $— ZPM(Pnew-g)
Pnew-Y <— f(pneW“r)
if DPnew-Y < DPbest-Y then Pbest < Pnew

return ppest
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Drest <— randomWalk( f)

Input: f: the objective function subject to minization
Input: [impiicit) should Terminate: the termination criterion
Data: pnew: the new solution to be tested

Output: ppest: the best individual ever discovered

begin

Dbest-T <— gpm(pbest~g)
Pbest.Y <— f(pbesbx)
Pnew < Dbest
while —shouldTerminate do
Dnew-g — mutation(ppew-g)
Pnew-T <— gpm(pnew~g)
Pnew-Y <— f(pneW“r)
if DPnew-Y < DPbest-Y then Pbest < Pnew

return ppest

Dbest-g $— create() @ create initial candidate

solution ppest (also store
it in Dnew)
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Drest <— randomWalk( f)

Input: f: the objective function subject to minization
Input: [impiicit) should Terminate: the termination criterion
Data: pnew: the new solution to be tested

Output: ppest: the best individual ever discovered

begin

Dbest-T <— gpm(pbest~g)
Pbest.Y <— f(pbesbx)
Pnew < Dbest
while —shouldTerminate do
Dnew-g — mutation(ppew-g)
Pnew-T <— gpm(pnew~g)
Pnew-Y <— f(pneW“r)
if DPnew-Y < DPbest-Y then Pbest < Pnew

return ppest

Dbest-g $— create() @ create initial candidate

@ derive new solution ppey

solution ppest (also store
it in Dnew)

from prew

Metaheuristic Optimization Thomas Weise

5/12



Random Walks

”

>
<

Drest <— randomWalk( f)

Input: f: the objective function subject to minization

Input: [impiicit) should Terminate: the termination criterion

Data: pnew: the new solution to be tested
Output: ppest: the best individual ever discovered
begin
Dbest-g $— create()
Dbest-T — ZPM(Dpest.g)
Pbest-Y — f(pbesbx)
DPnew < Dbest
while —should Terminate do
Dnew-g — mutation(ppew-g)
Drew-T $— ZPM(Pnew-g)
Pnew-Y <— f(pneW“r)
if Pnew-Y S Pbest-Y then Pbest < Pnew

return ppest

@ create initial candidate
solution ppest (also store
it in Dnew)

@ derive new solution ppey
from prew

© if prew is better than
Pbest, SEt Pbest = Pnew
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Drest <— randomWalk( f)

Input: f: the objective function subject to minization
Input: [impiicit) should Terminate: the termination criterion
Data: pnew: the new solution to be tested

Output: ppest: the best individual ever discovered

begin
Dbest-g $— create() @ create initial candidate
Dbest-T — ZPM(Dpest.g) solution ppest (also store
Pbest.Y <— f(pbesbx) it in pnew)

Pnew < Dbest

1 @ derive new solution p
while —should Terminate do e

. from prew
Dnew-g — mutation(ppew-g)
Prew-2 <— gPM(Pnew-g) ® if phew is better than
Prew-Y < f(Pnew-x) Pbest, S€t Pbest = Pnew
if Dnew-Y < Doest-y then Prest <— Dnew @ go back to @, until
termination criterion is
return ppest met

Metaheuristic Optimization Thomas Weise 5/12



e Let us implement a random walk




e Let us implement a random walk for
@ numerical optimization (over R™) and for




e Let us implement a random walk for

@ numerical optimization (over R™) and for
@ combinatorial optimization (e.g., for TSP over permutations).




Implementing the Random Walk
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Listi he Random Walk Algorithm

public class RandomWalk<G,

Individual<G, X> pstar, pnew;

pstar = new Individual<>();
pnew = new Individual<>Q);

pstar.g = this.nullary.create(this.random);
pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);
pnew.assign(pstar);

while (!(this.termination.shouldTerminate())) {

pnew.g = this.unary.mutate(pnew.g, this.random);
pnew.x = this.gpm.gpm(pnew.g);
pnew.v = f.compute (pnew.x);

if (pnew.v <= pstar.v) {
pstar.assign(pnew) ;
}
}

return pstar;
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X> extends OptimizationAlgorithm<G,
public Individual<G, X> solve(final IObjectiveFunction<X> f) {

x> {
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Now we have: first simple metaheuristic algorithm

Is it good?

When is optimization efficient?

When the information we get, e.g., from objective function
evaluation, is used efficiently

e Comparison with algorithms that do not use this information!
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e Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

e Hence, their performance is much worse, similar to random sampling.

e This means that the idea of expection some sort of “gradient” in the
search space towards better solutions is reasonable.
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