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e Use Java RMI [

e Implement a RMI server for chat
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e Many Uls are designed according to the Model-View-Controller (or
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e Some underlying process or model manages a state
e Views display the state of the model
e Views are updated by receiving events

e Events usually encapsulated in objects

e Views implement certain callback interfaces, i.e., have methods that
can process events




Events and Model-View-Controler §\

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

e Some underlying process or model manages a state

e Views display the state of the model

e Views are updated by receiving events

e Events usually encapsulated in objects

e Views implement certain callback interfaces, i.e., have methods that
can process events

e Java is full of this, just google for ActionListener , MouseListener ,
TableModelListener , VetoableChangelListener , ...
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e RMI is a technology for building distributed applications

o A server object is registered in a naming service

( java.rmi.registry.Registry )
e Object functionality is provided via interfaces
e The server side implements the functionality with a ‘real’ class

e The client side automatically creates a proxy instance of the object
that forwards all calls to the server

e In Java RMI, we can also create callback objects

e These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote
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RMI is a technology for building distributed applications

A server object is registered in a naming service

( java.rmi.registry.Registry )
Object functionality is provided via interfaces
The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

In Java RMI, we can also create callback objects
These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote

They can be passed to an RMI server without needing to be
registered in a registry

— We can have distributed callbacks, and therefore: distributed
model-view-controler application structures
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e With this, we can implement a chat system!

e Server:
o central instance distributing chat events
o provides methods to login, log out, and to send messages
e maintains a list of logged in clients and corresponding callback
interfaces

e Client

o uses server to log in, log out, and to send message
o registeres a callback interface at log in
o client receives events from server and updates ui
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has fully been implemented in ChatClient
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e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with life!
e Follow the comments in ChatServer and IChatServer !
e Start the server, connect some clients to the server, chat. ..
e Send me your complete Eclipse project folder packed as zip archive
with name hwo4_ [your_student_id] .zip (Where [your_student_id] is
replaced with your student id)
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