LR B

HEFEI UNIVERSITY

Distributed Computing
Homework 4: RMI-based Chat

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://www.it-weise.de

i =4
T H A

ri]?@féﬂ#i[;’;/éJZB
5HRA

R AR ACHE RBT
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ RMI Chat

@ Homework

Distributed Computing

Thomas Weise

e Use Java RMI [

e Implement a RMI server for chat

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

e Some underlying process or model manages a state

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [
e Some underlying process or model manages a state

e Views display the state of the model

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [
e Some underlying process or model manages a state

e Views display the state of the model

e Views are updated by receiving events

Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

Some underlying process or model manages a state

Views display the state of the model

e Views are updated by receiving events

Events usually encapsulated in objects

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

e Some underlying process or model manages a state
e Views display the state of the model
e Views are updated by receiving events

e Events usually encapsulated in objects

e Views implement certain callback interfaces, i.e., have methods that
can process events

Events and Model-View-Controler §\

e Many Uls are designed according to the Model-View-Controller (or
Model-Delegate) pattern [

e Some underlying process or model manages a state

e Views display the state of the model

e Views are updated by receiving events

e Events usually encapsulated in objects

e Views implement certain callback interfaces, i.e., have methods that
can process events

e Java is full of this, just google for ActionListener , MouseListener ,
TableModelListener , VetoableChangelListener , ...

Distributed Computing Thomas Weise 4/10

o RMI is a technology for building distributed applications

o RMI is a technology for building distributed applications

o A server object is registered in a naming service

(java.rmi.registry.Registry)

o RMI is a technology for building distributed applications

o A server object is registered in a naming service

(java.rmi.registry.Registry)

e Object functionality is provided via interfaces

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)

Object functionality is provided via interfaces

The server side implements the functionality with a ‘real’ class

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)

Object functionality is provided via interfaces

The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

RMI Callbacks %()

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)

Object functionality is provided via interfaces

The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

In Java RMI, we can also create callback objects

Distributed Computing Thomas Weise 5/10

RMI Callbacks %\

e RMI is a technology for building distributed applications

o A server object is registered in a naming service

(java.rmi.registry.Registry)
e Object functionality is provided via interfaces
e The server side implements the functionality with a ‘real’ class

e The client side automatically creates a proxy instance of the object
that forwards all calls to the server

e In Java RMI, we can also create callback objects

e These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote

Distributed Computing Thomas Weise 5/10

RMI Callbacks %\

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)
Object functionality is provided via interfaces
The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

In Java RMI, we can also create callback objects
These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote

They can be passed to an RMI server without needing to be
registered in a registry

Distributed Computing Thomas Weise 5/10

RMI Callbacks %\

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)
Object functionality is provided via interfaces
The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

In Java RMI, we can also create callback objects
These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote

They can be passed to an RMI server without needing to be
registered in a registry

— We can have distributed callbacks

Distributed Computing Thomas Weise 5/10

RMI Callbacks %\

RMI is a technology for building distributed applications

A server object is registered in a naming service

(java.rmi.registry.Registry)
Object functionality is provided via interfaces
The server side implements the functionality with a ‘real’ class

The client side automatically creates a proxy instance of the object
that forwards all calls to the server

In Java RMI, we can also create callback objects
These inherit from java.rmi.server.UnicastRemoteObject and
implement a callback interface derived from java.rmi.Remote

They can be passed to an RMI server without needing to be
registered in a registry

— We can have distributed callbacks, and therefore: distributed
model-view-controler application structures

Distributed Computing Thomas Weise 5/10

e With this, we can implement a chat system!

e With this, we can implement a chat system!

e Server

e With this, we can implement a chat system!
e Server:
o central instance distributing chat events

e With this, we can implement a chat system!
e Server:

o central instance distributing chat events
o provides methods to login, log out, and to send messages

e With this, we can implement a chat system!
e Server:

o central instance distributing chat events
o provides methods to login, log out, and to send messages
e maintains a list of logged in clients

e With this, we can implement a chat system!

e Server:
o central instance distributing chat events
o provides methods to login, log out, and to send messages
e maintains a list of logged in clients

e Client

e With this, we can implement a chat system!

e Server:
o central instance distributing chat events
o provides methods to login, log out, and to send messages
e maintains a list of logged in clients

e Client
o uses server to log in, log out, and to send message

e With this, we can implement a chat system!

e Server:

o central instance distributing chat events

o provides methods to login, log out, and to send messages

e maintains a list of logged in clients and corresponding callback
interfaces

e Client

o uses server to log in, log out, and to send message
o registeres a callback interface at log in

e With this, we can implement a chat system!

e Server:
o central instance distributing chat events
o provides methods to login, log out, and to send messages
e maintains a list of logged in clients and corresponding callback
interfaces

e Client

o uses server to log in, log out, and to send message
o registeres a callback interface at log in
o client receives events from server and updates ui

e For this homework, the following things have been done

e For this homework, the following things have been done:

o The functionality of a chat server has been defined in interface
IChatServer

e For this homework, the following things have been done:
o The functionality of a chat server has been defined in interface
IChatServer
o The client callback interface has been defined in IChatClient

e For this homework, the following things have been done:
o The functionality of a chat server has been defined in interface
IChatServer
o The client callback interface has been defined in IChatClient
o A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

e For this homework, the following things have been done:
o The functionality of a chat server has been defined in interface
IChatServer
e The client callback interface has been defined in IChatClient
o A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
e An event class for chat events has been defined in ChatEvent

Chat Program %ﬁ)

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

Distributed Computing Thomas Weise 7/10

Chat Program %()

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is

Distributed Computing Thomas Weise 7/10

Chat Program %()

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with lifel

Distributed Computing Thomas Weise 7/10

Chat Program

”

>
<

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with life!
e Follow the comments in ChatServer and IChatServer !

Distributed Computing Thomas Weise 7/10

Chat Program

”

>
<

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with lifel

e Follow the comments in ChatServer and IChatServer !
e Start the server

Distributed Computing Thomas Weise 7/10

Chat Program

”

>
<

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with lifel

e Follow the comments in ChatServer and IChatServer !
e Start the server, connect some clients to the server

Distributed Computing Thomas Weise 7/10

Chat Program

”

>
<

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with lifel

e Follow the comments in ChatServer and IChatServer !
e Start the server, connect some clients to the server, chat. ..

Distributed Computing Thomas Weise 7/10

Chat Program

”

>
<

e For this homework, the following things have been done:

e The functionality of a chat server has been defined in interface
IChatServer
The client callback interface has been defined in IChatClient
A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient
An event class for chat events has been defined in ChatEvent
A skeleton class for the chat server, but no functionality is provided in
ChatServer

e What remains to be done is:
e Fill the chat server ChatServer with life!
e Follow the comments in ChatServer and IChatServer !
e Start the server, connect some clients to the server, chat. ..
e Send me your complete Eclipse project folder packed as zip archive
with name hwo4_ [your_student_id] .zip (Where [your_student_id] is
replaced with your student id)

Distributed Computing Thomas Weise 7/10

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography |

W

1AQ

1. Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the java system. In Douglas C. Schmidt and
Doug Lea, editors, Proceedings of the USENIX 1996 Conference on Object-Oriented Technologies (COOTS), Toronto, ON,
Canada, 1996. URL http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf.

2. William Grosso. Java RMI. Sebastopol, CA, USA: O’'Reilly Media, Inc., 2011. ISBN 1449315356 and 9781449315351. URL
http://books.google.de/books?id=TeK5uL2dWwQC.

3. Josef Stepisnik. Distributed Object-Oriented Architectures: Sockets, Java RMI and CORBA. Hamburg, Germany: Diplomica
Verlag GmbH, 2007. ISBN 3836650339 and 9783836650335. URL http://books.google.de/books?id=qNGTzYdJt18C.

4. William Crawford and Jonathan Kaplan. J2EE Design Patterns. Patterns of the Real World. Sebastopol, CA, USA: O'Reilly
Media, Inc., 2003. ISBN 0596004273 and 9780596004279. URL http://books.google.de/books?id=x-7_WOP9IKGsC.

5. Barbara Purchase and Steven Holzner. Design Patterns for Dummies. For Dummies Computers Series. New York, NY, USA:
John Wiley & Sons Ltd., 2006. ISBN 0471798541 and 9780471798545. URL
http://books.google.de/books?id=6rZbzSbKsQMC.

6. Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural styles, design patterns, and objects.
IEEE Software Magazine, 14(1):43-52, January—February 1997. doi: 10.1109/52.566427. URL
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/.

7. Frank Buschmann, Regine Meunier, Hand Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. New York, NY, USA: John Wiley & Sons Ltd., August 8, 1996. ISBN
047-1958-697 and 978-0471958697. URL http://books.google.de/books?id=0kUFZDuqvmEC.

Distributed Computing Thomas Weise 10/10

http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf
http://books.google.de/books?id=TeK5uL2dWwQC
http://books.google.de/books?id=qNGTzYdJt18C
http://books.google.de/books?id=x-7_W0P9KGsC
http://books.google.de/books?id=6rZbzSbKsQMC
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/
http://books.google.de/books?id=0kUFZDuqvmEC

	Outline
	Overview
	RMI Chat
	Events and Model-View-Controler
	RMI Callbacks
	Callbacks for Chat!

	Homework
	Chat Program

	Presentation End
	Bibliography

