
Frequency Fitness Assignment

Prof. Dr. Thomas WEISE

Institute of Applied Optimization

School of Artificial Intelligence and Big Data, Hefei University

Frequency Fitness Assignment

1. Introduction into Optimization

2. Metaheuristic Optimization

3. Invariance Properties

4. Frequency Fitness Assignment

5. Summary

6. Advertisement

Slides Video

1. Introduction into
Optimization

Slides Video

Introduction into Optimization

• Optimization means finding “superlatives”

Introduction: Optimization Problem

O
p

ti
m

iz
a

ti
o

n An optimization problem is a situation which
requires deciding for one choice from a set of
possible alternatives in order to reach a
predefined or required benefit at minimal costs.

Solving an optimization problem requires finding
an input element 𝑥⋆ within a set 𝕏 of allowed
elements for which a mathematical function𝑓: 𝕏 ↦ ℝ takes on the smallest possible value.

Introduction: Optimization Examples – TSP

• Traveling Salesperson
Problem (TSP): 𝕏 = the set
of all possible round-trip
tours through 𝑛 given cities

• 𝑓: 𝕏 ↦ ℝ: length of the tour

• optimal solution 𝑥⋆ = shortest possible tour

Introduction: Optimization Examples – MaxSat

• Maximum Satisfiability
Problem (MaxSat): 𝕏 = set
of all possible bit strings of
length 𝑛
• 𝑓: 𝕏 ↦ ℝ: number of OR-

clauses left unsatisfied

• optimal solution 𝑥⋆ = bit string that satisfies
all OR clauses (and, hence,
makes the AND clause
become TRUE)

Introduction: Optimization Examples – Packing

• 1-D Bin Packing Problem: 𝕏 = all possible orders to pack 𝑛 objects into
bins of a given size

• 𝑓: 𝕏 ↦ ℝ: number of bins needed

• optimal solution 𝑥⋆ = the packing needing the fewest bins

Introduction: Optimization is Hard!

• Finding the globally optimal solution 𝑥⋆ from the set of all possible
solutions 𝕏 is often an 𝒩𝒫-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal
solution of every instance of a given 𝒩𝒫-hard problem in a runtime that
is not longer than polynomial in the size of the problem (i.e., existing
algorithms may need exponential runtime in the worst case).

• In other words, if we want to guarantee to find the best possible solution 𝑥⋆ for all possible instances of a problem, we often cannot really be much
faster than testing all possible candidate solutions 𝑥 ∈ 𝕏 in the worst
case.

2. Metaheuristic Optimization

Slides Video

Metaheuristic Optimization

• Metaheuristics follow
the Trial-and-Error
Idea of iterative
improvement

• Drop the guarantee
to find the optimal
solution.

• Find good solution
within a feasible
runtime.

Derive set 𝑁0 ⊂ 𝕏 of
new solutions by
applying search

operators to
elements of 𝑆0

Select 𝑆1 from joint
set P0 = 𝑆0 ∪ 𝑁0 by
preferring solutions 𝒙 ∈ 𝑷𝟎 with better 𝒇(𝒙)

Begin with a set 𝑆0 ⊂ 𝕏 of
one or multiple randomly

sampled solutions

Derive set 𝑁𝑖 ⊂ 𝕏 of
new solutions by
applying search

operators to
elements of 𝑆𝑖

Select 𝑆𝑖+1 from
joint set Pi = 𝑆𝑖 ∪ 𝑁𝑖

by preferring
solutions 𝒙 ∈ 𝑷𝒊
with better 𝒇(𝒙)

Set 𝑆𝑖 ⊂ 𝕏 of one or
multiple interesting

solutions

Examples of Metaheuristics: (1+1) EA a.k.a. RLS

• Local Search with 𝑆𝑖 = 𝑁𝑖 = 1 is the simplest realization of the
metaheuristic idea

• accepts new solutions if better or equally good as current one

Examples of Metaheuristics: Simulated Annealing

• SA is a local search that
accepts also worsening
moves, but with a
probability that decreases
over time AND with the
difference quality

• Probability regulated by
temperature schedule
with parameters 𝑇0 and 𝜀

Examples of Metaheuristics: Standard Genetic Alg.

• Standard Genetic
Algorithm (SGA) with
Fitness Proportionate
Selection (Roulette
Wheel) for maximization

• Uses a population of size 𝑝𝑠 and unary and binary
operator (with crossover
rate 𝑐𝑟)

Metaheuristic Optimization

• Different metaheuristics realize the trial-and-error scheme differently

• They all prefer better solutions over worse ones.

• If they would always and only accept the better solutions, they could get trapped
in local optima.

• So they sometimes accept worse solutions, but the probability to choose a better
solution is always higher in average.

This is the most fundamental concept of metaheuristic optimization:

If you keep good solutions and modify them, you are
likely to get better solutions.

If you keep accepting better and better solutions, you
will get really good solutions eventually.

3. Invariance Properties

Slides Video

Invariance Properties

• Research in optimization, Machine Learning, and Artificial Intelligence
often use simple problems to try out and benchmark algorithms.

• These allow for many experiments in a short time.

• We often know the optimal solutions or bounds for their quality, we
can understand the results well.

• What we want is that algorithms perform similar to our benchmarking
results also on actual, real-world problems.

• We want invariance properties.

Invariance Properties: Example OneMax

• OneMax is simplest benchmark
problem in discrete
optimization.

• It is defined over 𝑋 = 0,1 𝑛,
i.e., bit strings of length 𝑛.

• “Find the bit string with all
ones.”
• “Maximize the number of

ones.”
• 𝑓1 𝑥 = 𝑛 − 𝑥 0

10

20

30

40

50

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

𝜮𝒙

Invariance Properties: Example OneMax

• Now I create a modified version of
this problem.

• 𝑓2 𝑥 = 𝑓1 𝑥 + 10
• Expectation: Any reasonable

algorithm should perform exactly
the same on 𝑓1 and 𝑓2.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0

10

20

30

40

50

60

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

𝜮𝒙

Invariance Properties: Example OneMax

• Now I create a modified version of
this problem.

• 𝑓2 𝑥 = 𝑓1 𝑥 + 10
• Expectation: Any reasonable

algorithm should perform exactly
the same on 𝑓1 and 𝑓2.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0

10

20

30

40

50

60

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

𝜮𝒙

The (1+1) EA and Simulated Annealing are

invariant under translations of the

objective function value.

The Standard Genetic Algorithm is not.

Invariance Properties: Example OneMax

• Now I create another modified
version of this problem.

• 𝑓3 𝑥 = 0.8 ∗ 𝑓1 𝑥
• Expectation: A reasonable

algorithm should perform exactly
the same on 𝑓1 and 𝑓3.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2) 0

10

20

30

40

50

60

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

f3(x)=0.8*f1(x)

𝜮𝒙

Invariance Properties: Example OneMax

• Now I create another modified
version of this problem.

• 𝑓3 𝑥 = 0.8 ∗ 𝑓1 𝑥
• Expectation: A reasonable

algorithm should perform exactly
the same on 𝑓1 and 𝑓3.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2) 0

10

20

30

40

50

60

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

f3(x)=0.8*f1(x)

𝜮𝒙

The (1+1) EA and the Standard Genetic

Algorithm are invariant under scaling of

the objective function value.

Simulated Annealing is not.

Invariance Properties: Example OneMax

• Now I create another modified
version of this problem.

• 𝑓4 𝑥 = 𝑓1 𝑥 2
• Expectation: A nice algorithm

should perform exactly the same
on 𝑓1 and 𝑓4.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0

500

1000

1500

2000

2500

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

f3(x)=0.8*f1(x)

f4(x)=[f1(x)]²

𝜮𝒙

Invariance Properties: Example OneMax

• Now I create another modified
version of this problem.

• 𝑓4 𝑥 = 𝑓1 𝑥 2
• Expectation: A nice algorithm

should perform exactly the same
on 𝑓1 and 𝑓4.
• (1+1)-EA: acceptance decision

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0

500

1000

1500

2000

2500

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

f3(x)=0.8*f1(x)

f4(x)=[f1(x)]²

𝜮𝒙

The (1+1) EA is invariant under all order-

preserving transformations of the

objective function value.

The Standard Genetic Algorithm and

Simulated Annealing are not.

Now let’s enter eerie territory.

Invariance Properties: Example OneMax

• Now I create another modified
version of this problem: a trap.

• 𝑓5 𝑥 = 0 if 𝑓1 𝑥 = 501 + 𝑓1(𝑥) else
• Expectation: Algorithm

performance on 𝑓1 𝑥 probably
does not carry over to 𝑓5 𝑥 .

• Neither the (1+1) EA, SA, nor
SGA can deal with this.

• The (1+1) EA has exponential
runtime on traps.

0

10

20

30

40

50

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f5(x)=Trap

𝜮𝒙

Invariance Properties: Example OneMax

• Now I create another modified
version: a 𝓌 = 𝟏𝟎 jump.

• Insert a deceptive area of
length 𝓌 − 1 = 𝟏𝟎 before
optimum

• Expectation: Algorithm
performance on 𝑓1 𝑥 probably
does not carry over to 𝑓6 𝑥 .

• Neither the (1+1) EA, SA, nor
SGA can deal with this well.

• The (1+1) EA a runtime
exponential in 𝓌 on jumps.

0

10

20

30

40

50

60

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f6(x)=Jump10

𝜮𝒙

Invariance Properties: Example OneMax

• How about I apply an arbitrary
bijection 𝑔 that preserves the
optimum to 𝑓1 𝑥 and get 𝑓7 𝑥 = 𝑔(𝑓1 𝑥)?

• Expectation: Algorithm
performance on 𝑓1 𝑥 probably
does not carry over to 𝑓7 𝑥 .

• Neither the (1+1) EA, SA, nor
SGA can deal with this well.

• Indeed, there is no method that
can deal with this well.

0

25

50

75

100

125

150

175

200

225

250

275

0 10 20 30 40 50

OneMax (50 bit)

f1(x) f7=bijection

𝜮𝒙

T Weise, Z Wu, X Li, and Y Chen. Frequency Fitness Assignment: Making Optimization Algorithms Invariant under Bijective

Transformations of the Objective Function Value. IEEE Transactions on Evolutionary Computation 25(2):307–319. 2021.

0

10

20

30

40

50

60

0 20 40

0

500

1000

1500

2000

2500

0 20 40

0

10

20

30

40

50

60

0 20 40
0

10

20

30

40

50

0 20 40

0

50

100

150

200

250

0 20 40

4. Frequency Fitness Assignment

Slides Video

FFA: Idea

• Frequency Fitness Assignment (FFA) is a module that can be plugged
into different existing algorithms.

• It changes the way the algorithm selects the interesting solutions 𝑆𝑖+1
from the set 𝑃𝑖 = 𝑆𝑖 ∪ 𝑁𝑖.
• It therefore maintains a table 𝐻with the encounter frequency of each

objective value in the selection decisions.

• The table 𝐻 is initially filled with zeros.

• Before the selection step of the algorithm, 𝐻 𝑓(𝑃𝑖[𝑗]) ∀𝑗 ∈ 1. . |𝑃𝑖| is
incremented by 1.

• Then, H 𝑓 𝑃𝑖 𝑗 replaces 𝑓 𝑃𝑖 𝑗 in the actual selection decisions.

FFA: (1+1) EA and (1+1) FEA

FFA: What does this do?

• Static optimization problems become dynamic, because frequency
fitness changes over time.

• Solutions get less attractive the more often their corresponding
objective values have been seen. This also holds for local optima…
• Solutions with better objective values are no longer preferred over

such with worse objective value.

• Instead, solutions with less-frequent objective values are preferred.

• An algorithm using FFA is invariant under all injective transformations
of the objective function value.

• They will perform identical on ALL of the OneMax-based functions
from before!

FFA: Discrete Optimization Theory Benchmarks

FFA: (1+1) FEA on OneMax

• Average runtime
of (1+1) EA on
OneMax is in 𝒪(𝑛 ln 𝑛)
• Average runtime

of (1+1) FEA on
OneMax seems to
be slower by factor
proportional in 𝑛,
i.e., seems to be in 𝒪(𝑛2 ln 𝑛).

FFA: (1+1) FEA on TwoMax

• One local and
opposite global
optimum of almost
same size

• Average runtime
of (1+1) EA on
TwoMax is
exponential

• (1+1) FEA has a
mean runtime that
seems to be in 𝒪(𝑛2 ln 𝑛).

FFA: (1+1) FEA on Trap

• Average runtime
of (1+1) EA on Trap
is exponential

• (1+1) FEA behaves
the same as on
OneMax, i.e., has
polynomial mean
runtime

FFA: (1+1) FEA on Jump

• Average runtime
of (1+1) EA on
Jump is
exponential in
jump width 𝓌
• (1+1) FEA behaves

the same as on
OneMax for all
jump widths 𝓌,
i.e., has
polynomial mean
runtime

FFA: (1+1) FEA on Plateau

• Average runtime
of (1+1) EA on
Plateaus is
exponential in
plateau width 𝓌
• (1+1) FEA is a bit

slower, probably
proportional to a
factor linear in 𝑛
• Plateaus remain

plateaus under FFA

FFA: (1+1) FEA on MaxSat

• The Maximum Satisfiability Problem (MaxSat) is 𝒩𝒫-hard

• SatLib provides satisfiable benchmark instances from the phase
transition region (i.e., the hardest type of instances) for different scales 𝑛 ∈ 20 ∪ 25𝑖 ∀𝑖 ∈ 2. . 10 .

• We conduct 11’000 runs with the (1+1) FEA on each instance scale.
• The (1+1) EA is very much slower than the (1+1) FEA, so we can use it

only on smaller scales.

• Our computational budget is always 1010 FEs.

FFA: (1+1) FEA on MaxSat

instance

type

(1+1) EA (1+1) FEA

success rate ERT mean 𝒚𝒄 success rate ERT mean 𝒚𝑩
uf20_* 0.985 1.91 ∗ 108 0.015 1 3′091 0
uf50_* 0.748 3.56 ∗ 109 0.299 1 93′459 0
uf75_* 0.583 7.41 ∗ 109 0.528 1 490′166 0
uf100_* 1 2.14 ∗ 106 0
uf125_* 1 5.27 ∗ 106 0
uf150_* 1 1.40 ∗ 107 0
uf175_* 1 5.78 ∗ 107 0
uf200_* 0.991 2.44 ∗ 108 0.00945
uf225_* 0.994 2.43 ∗ 108 0.00555
uf250_* 0.992 2.43 ∗ 108 0.00782

• The FEA is
better on
problems
with 250
variables
than the
EA on
problems
with 50.

FFA: (1+1) FEA on MaxSat – ERT-ECDF

FFA: What does this do?

• FFA makes the simple (1+1) EA slower on problems that it can easily
solve.

• The slowdown is roughly proportional to the number of possible
objective values.

• On some non-𝒩𝒫-hard problems for which the (1+1) EA needs
exponential runtime, the (1+1) FEA needs polynomial mean runtime

• Plateaus of the objective are still plateaus under FFA

• FFA very significantly speeds up the (1+1) EA on the 𝒩𝒫-hard MaxSat
problem

FFA: Now something weird…
• Let’s say you have an optimization problem with objective function 𝑓(𝑥)
• You encrypt the objective values and do not tell them to the algorithm

• Let’s say you apply AES, RSA, or the Cesar cypher as a function 𝑔:ℕ ↦ ℕ, i.e., do 𝑔 𝑓 𝑥
• Encryption removes any order, correlation or causality information, i.e., 𝑔 𝑓 𝑥 does not correlate with 𝑓 𝑥 in any way

• If the (1+1) FEA can find the optimum of 𝑓 𝑥 …
• …then it will find exactly the same solution in exactly the same runtime

even if you apply it to the encrypted problem 𝑔 𝑓 𝑥
• …because encryption is a bijective transformation.

5. Summary

Slides Video

Summary

• Frequency Fitness Assignment (FFA) is an algorithm module that can be
plugged into existing algorithms.

• It renders algorithms invariant under all injective transformations of
the objective function value.

• It makes them optimize without bias for good solutions.

• It slows them down on easy problems.

• It can speed them up on hard problems.

• It is limited to objective functions that cannot take on too many
different objective values.

T Weise, Z Wu, X Li, Y Chen, and J Lässig. Frequency Fitness Assignment: Optimization without Bias for Good Solutions can

be Efficient. IEEE Transactions on Evolutionary Computation. Early Access 2022.

T Weise, Y Chen, X Li, and Z Wu. Selecting a diverse set of benchmark instances from a tunable model problem for black-

box discrete optimization algorithms. Applied Soft Computing Journal 92:106269, June 2020.

T Weise, X Li, Y Chen, and Z Wu. Solving Job Shop Scheduling Problems Without Using a Bias for Good Solutions. In Genetic

and Evolutionary Computation Conference Companion (GECCO'21), July 10-14, 2021, Lille, France. ACM.

T Liang, Z Wu, J Lässig, D van den Berg, and T Weise. Solving the Traveling Salesperson Problem using Frequency Fitness

Assignment. In Proceedings of the IEEE Symposium on Foundations of Computational Intelligence (IEEE FOCI'22), part of

the IEEE Symposium Series on Computational Intelligence (SSCI 2022). December 4–7, 2022, Singapore

6. Advertisement

Slides

moptipy – A Python Package for Metaheuristics

• Implementations of
several
metaheuristics

• Run experiments in
a parallel or
distributed fashion

• Wrap algorithm
implementations
from other packages
in a unified API

• Evaluate
experiments

Optimization Algorithms: Free Online Book

• Work in progress

• Several algorithms
explained (EA,
SA,…)
• Everything is done

by experiments
and with code
examples.

• Goal: Learn how to
understand
algorithms

bookbuilderpy: Automated Workflow for Books

• Automated
workflow for
building
pdf/html/epub
books from
Markdown

• Can be triggered
via GitHub actions
upon commit and
auto-publish book
to GitHub pages

Thank you very much.

谢谢您。Prof. Dr. Thomas Weise (汤卫思)

Institute of Applied Optimization, Director

School of Artificial Intelligence and Big Data

Hefei University, South Campus 2, Building 53, Office 902

Hefei Economic and Technological Development Area

Jinxiu Dadao 99, Shushan, Hefei 230601, Anhui, China

Email: tweise@hfuu.edu.cn, tweise@ustc.edu.cn,

tweise@gmx.de

Web: http://iao.hfuu.edu.cn

Mobile: +8618755122841

Skype: thomas.weise

合肥学院 人工智能与大数据学院 应用优化研究所
中国 安徽省 合肥市 蜀山区 230601 经济技术开发区
南2区/南艳湖校区 锦绣大道99号 53栋 合肥学院综合实验楼

Website Slides Video

