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Introduction into Optimization

• Optimization means finding “superlatives”



Introduction: Optimization Problem

O
p

ti
m

iz
a

ti
o

n An optimization problem is a situation which
requires deciding for one choice from a set of
possible alternatives in order to reach a
predefined or required benefit at minimal costs.

Solving an optimization problem requires finding
an input element 𝑥⋆ within a set 𝕏 of allowed
elements for which a mathematical function𝑓: 𝕏 ↦ ℝ takes on the smallest possible value.



Introduction: Optimization Examples – TSP

• Traveling Salesperson 
Problem (TSP): 𝕏 = the set 
of all possible round-trip 
tours through 𝑛 given cities

• 𝑓: 𝕏 ↦ ℝ: length of the tour

• optimal solution              𝑥⋆ = shortest possible  tour



Introduction: Optimization Examples – MaxSat

• Maximum Satisfiability 
Problem (MaxSat): 𝕏 = set 
of all possible bit strings of 
length 𝑛
• 𝑓: 𝕏 ↦ ℝ: number of OR-

clauses left unsatisfied

• optimal solution              𝑥⋆ = bit string that satisfies 
all OR clauses (and, hence, 
makes the AND clause 
become TRUE)



Introduction: Optimization Examples – Packing

• 1-D Bin Packing Problem: 𝕏 = all possible orders to pack 𝑛 objects into 
bins of a given size

• 𝑓: 𝕏 ↦ ℝ: number of bins needed

• optimal solution 𝑥⋆ = the packing needing the fewest bins



Introduction: Optimization is Hard!

• Finding the globally optimal solution 𝑥⋆ from the set of all possible 
solutions 𝕏 is often an 𝒩𝒫-hard problem.

• Currently, there is no algorithm that can guarantee to find the optimal 
solution of every instance of a given 𝒩𝒫-hard problem in a runtime that 
is not longer than polynomial in the size of the problem (i.e., existing 
algorithms may need exponential runtime in the worst case).

• In other words, if we want to guarantee to find  the best possible solution 𝑥⋆ for all possible instances of a problem, we often cannot really be much 
faster than testing all possible candidate solutions 𝑥 ∈ 𝕏 in the worst 
case.



2. Metaheuristic Optimization
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Metaheuristic Optimization

• Metaheuristics follow 
the Trial-and-Error 
Idea of iterative 
improvement

• Drop the guarantee 
to find the optimal 
solution.

• Find good solution 
within a feasible 
runtime.

Derive set 𝑁0 ⊂ 𝕏 of 
new solutions by 
applying search 

operators to 
elements of  𝑆0

Select 𝑆1 from joint 
set P0 = 𝑆0 ∪ 𝑁0 by 
preferring solutions 𝒙 ∈ 𝑷𝟎 with better 𝒇(𝒙)

Begin with a set 𝑆0 ⊂ 𝕏 of 
one or multiple randomly 

sampled solutions

Derive set 𝑁𝑖 ⊂ 𝕏 of 
new solutions by 
applying search 

operators to 
elements of  𝑆𝑖

Select 𝑆𝑖+1 from 
joint set Pi = 𝑆𝑖 ∪ 𝑁𝑖

by preferring 
solutions 𝒙 ∈ 𝑷𝒊
with better 𝒇(𝒙)

Set 𝑆𝑖 ⊂ 𝕏 of one or 
multiple interesting 

solutions



Examples of Metaheuristics: (1+1) EA a.k.a. RLS

• Local Search with 𝑆𝑖 = 𝑁𝑖 = 1 is the simplest realization of the 
metaheuristic idea

• accepts new solutions if better or equally good as current one



Examples of Metaheuristics: Simulated Annealing

• SA is a local search that 
accepts also worsening 
moves, but with a 
probability that decreases 
over time AND with the 
difference quality

• Probability regulated by 
temperature schedule 
with parameters 𝑇0 and 𝜀



Examples of Metaheuristics: Standard Genetic Alg.

• Standard Genetic 
Algorithm (SGA) with 
Fitness Proportionate 
Selection (Roulette 
Wheel) for maximization

• Uses a population of size 𝑝𝑠 and unary and binary 
operator (with crossover 
rate 𝑐𝑟)



Metaheuristic Optimization

• Different metaheuristics realize the trial-and-error scheme differently

• They all prefer better solutions over worse ones.

• If they would always and only accept the better solutions, they could get trapped 
in local optima.

• So they sometimes accept worse solutions, but the probability to choose a better 
solution is always higher in average.

This is the most fundamental concept of metaheuristic optimization:

If you keep good solutions and modify them, you are 
likely to get better solutions.

If you keep accepting better and better solutions, you 
will get really good solutions eventually.
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Invariance Properties

• Research in optimization, Machine Learning, and Artificial Intelligence 
often use simple problems to try out and benchmark algorithms.

• These allow for many experiments in a short time.

• We often know the optimal solutions or bounds for their quality, we 
can understand the results well.

• What we want is that algorithms perform similar to our benchmarking 
results also on actual, real-world problems.

• We want invariance properties.



Invariance Properties: Example OneMax

• OneMax is simplest benchmark 
problem in discrete 
optimization.

• It is defined over 𝑋 = 0,1 𝑛, 
i.e., bit strings of length 𝑛.

• “Find the bit string with all 
ones.”
• “Maximize the number of 

ones.”
• 𝑓1 𝑥 = 𝑛 −  𝑥 0
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Invariance Properties: Example OneMax

• Now I create a modified version of 
this problem.

• 𝑓2 𝑥 = 𝑓1 𝑥 + 10
• Expectation: Any reasonable 

algorithm should perform exactly 
the same on 𝑓1 and 𝑓2.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0
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Invariance Properties: Example OneMax

• Now I create a modified version of 
this problem.

• 𝑓2 𝑥 = 𝑓1 𝑥 + 10
• Expectation: Any reasonable 

algorithm should perform exactly 
the same on 𝑓1 and 𝑓2.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0
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The (1+1) EA and Simulated Annealing are 

invariant under translations of the 

objective function value.

The Standard Genetic Algorithm is not.



Invariance Properties: Example OneMax

• Now I create another modified 
version of this problem.

• 𝑓3 𝑥 = 0.8 ∗ 𝑓1 𝑥
• Expectation: A reasonable 

algorithm should perform exactly 
the same on 𝑓1 and 𝑓3.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2) 0
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Invariance Properties: Example OneMax

• Now I create another modified 
version of this problem.

• 𝑓3 𝑥 = 0.8 ∗ 𝑓1 𝑥
• Expectation: A reasonable 

algorithm should perform exactly 
the same on 𝑓1 and 𝑓3.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2) 0
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The (1+1) EA and the Standard Genetic 

Algorithm are invariant under scaling of 

the objective function value.

Simulated Annealing is not.



Invariance Properties: Example OneMax

• Now I create another modified 
version of this problem.

• 𝑓4 𝑥 = 𝑓1 𝑥 2
• Expectation: A nice algorithm 

should perform exactly the same 
on 𝑓1 and 𝑓4.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0
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Invariance Properties: Example OneMax

• Now I create another modified 
version of this problem.

• 𝑓4 𝑥 = 𝑓1 𝑥 2
• Expectation: A nice algorithm 

should perform exactly the same 
on 𝑓1 and 𝑓4.
• (1+1)-EA: acceptance decision 

based on 𝑓 𝑥1 ≤ 𝑓(𝑥2) 
• SA: acceptance decision based on 𝑓 𝑥1 − 𝑓 𝑥2 
• SGA: acceptance decision based 

on ratio of 𝑓 𝑥1 to 𝑓(𝑥2)  0

500

1000

1500

2000

2500

0 10 20 30 40 50

OneMax (50 bit)

f1(x)

f2(x)=f1(x)+10

f3(x)=0.8*f1(x)

f4(x)=[f1(x)]²

𝜮𝒙

The (1+1) EA is invariant under all order-

preserving transformations of the 

objective function value.

The Standard Genetic Algorithm and 

Simulated Annealing are not.



Now let’s enter eerie territory.



Invariance Properties: Example OneMax

• Now I create another modified 
version of this problem: a trap.

• 𝑓5 𝑥 =  0 if 𝑓1 𝑥 = 501 + 𝑓1(𝑥) else
• Expectation: Algorithm 

performance on 𝑓1 𝑥 probably 
does not carry over to 𝑓5 𝑥 .

• Neither the (1+1) EA, SA, nor 
SGA can deal with this.

• The (1+1) EA has exponential 
runtime on traps.
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Invariance Properties: Example OneMax

• Now I create another modified 
version: a 𝓌 = 𝟏𝟎 jump.

• Insert a deceptive area of 
length 𝓌 − 1 = 𝟏𝟎 before 
optimum

• Expectation: Algorithm 
performance on 𝑓1 𝑥 probably 
does not carry over to 𝑓6 𝑥 .

• Neither the (1+1) EA, SA, nor 
SGA can deal with this well.

• The (1+1) EA a runtime 
exponential in 𝓌 on jumps.
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Invariance Properties: Example OneMax

• How about I apply an arbitrary 
bijection 𝑔 that preserves the 
optimum to 𝑓1 𝑥 and get      𝑓7 𝑥 = 𝑔(𝑓1 𝑥 )?

• Expectation: Algorithm 
performance on 𝑓1 𝑥 probably 
does not carry over to 𝑓7 𝑥 .

• Neither the (1+1) EA, SA, nor 
SGA can deal with this well.

• Indeed, there is no method that 
can deal with this well.
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T Weise, Z Wu, X Li, and Y Chen. Frequency Fitness Assignment: Making Optimization Algorithms Invariant under Bijective 

Transformations of the Objective Function Value. IEEE Transactions on Evolutionary Computation 25(2):307–319. 2021. 
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FFA: Idea

• Frequency Fitness Assignment (FFA) is a module that can be plugged 
into different existing algorithms.

• It changes the way the algorithm selects the interesting solutions 𝑆𝑖+1
from the set 𝑃𝑖 = 𝑆𝑖 ∪ 𝑁𝑖.
• It therefore maintains a table 𝐻with the encounter frequency of each 

objective value in the selection decisions.

• The table 𝐻 is initially filled with zeros.

• Before the selection step of the algorithm, 𝐻 𝑓(𝑃𝑖[𝑗]) ∀𝑗 ∈ 1. . |𝑃𝑖| is 
incremented by 1.

• Then, H 𝑓 𝑃𝑖 𝑗 replaces 𝑓 𝑃𝑖 𝑗 in the actual selection decisions.



FFA: (1+1) EA and (1+1) FEA



FFA: What does this do?

• Static optimization problems become dynamic, because frequency 
fitness changes over time.

• Solutions get less attractive the more often their corresponding 
objective values have been seen. This also holds for local optima…
• Solutions with better objective values are no longer preferred over 

such with worse objective value.

• Instead, solutions with less-frequent objective values are preferred.

• An algorithm using FFA is invariant under all injective transformations
of the objective function value.

• They will perform identical on ALL of the OneMax-based functions 
from before!



FFA: Discrete Optimization Theory Benchmarks



FFA: (1+1) FEA on OneMax

• Average runtime 
of (1+1) EA on 
OneMax is in 𝒪(𝑛 ln 𝑛)
• Average runtime 

of (1+1) FEA on 
OneMax seems to 
be slower by factor 
proportional in 𝑛, 
i.e., seems to be in 𝒪(𝑛2 ln 𝑛).



FFA: (1+1) FEA on TwoMax

• One local and 
opposite global 
optimum of almost 
same size

• Average runtime 
of (1+1) EA on 
TwoMax is 
exponential

• (1+1) FEA has a 
mean runtime that 
seems to be in 𝒪(𝑛2 ln 𝑛).



FFA: (1+1) FEA on Trap

• Average runtime 
of (1+1) EA on Trap 
is exponential

• (1+1) FEA behaves 
the same as on 
OneMax, i.e., has 
polynomial mean 
runtime 



FFA: (1+1) FEA on Jump

• Average runtime 
of (1+1) EA on 
Jump is 
exponential in 
jump width 𝓌
• (1+1) FEA behaves 

the same as on 
OneMax for all 
jump widths 𝓌, 
i.e., has 
polynomial mean 
runtime 



FFA: (1+1) FEA on Plateau

• Average runtime 
of (1+1) EA on 
Plateaus is 
exponential in 
plateau width 𝓌
• (1+1) FEA is a bit 

slower, probably 
proportional to a 
factor linear in 𝑛
• Plateaus remain 

plateaus under FFA



FFA: (1+1) FEA on MaxSat

• The Maximum Satisfiability Problem (MaxSat) is 𝒩𝒫-hard

• SatLib provides satisfiable benchmark instances from the phase 
transition region (i.e., the hardest type of instances) for different scales 𝑛 ∈ 20 ∪ 25𝑖 ∀𝑖 ∈ 2. . 10 .

• We conduct 11’000 runs with the (1+1) FEA on each instance scale.
• The (1+1) EA is very much slower than the (1+1) FEA, so we can use it 

only on smaller scales.

• Our computational budget is always 1010 FEs.



FFA: (1+1) FEA on MaxSat

instance 

type

(1+1) EA (1+1) FEA

success rate ERT mean 𝒚𝒄 success rate ERT mean 𝒚𝑩
uf20_* 0.985 1.91 ∗ 108 0.015 1 3′091 0
uf50_* 0.748 3.56 ∗ 109 0.299 1 93′459 0
uf75_* 0.583 7.41 ∗ 109 0.528 1 490′166 0
uf100_* 1 2.14 ∗ 106 0
uf125_* 1 5.27 ∗ 106 0
uf150_* 1 1.40 ∗ 107 0
uf175_* 1 5.78 ∗ 107 0
uf200_* 0.991 2.44 ∗ 108 0.00945
uf225_* 0.994 2.43 ∗ 108 0.00555
uf250_* 0.992 2.43 ∗ 108 0.00782

• The FEA is 
better on 
problems 
with 250 
variables 
than the 
EA on 
problems 
with 50.



FFA: (1+1) FEA on MaxSat – ERT-ECDF



FFA: What does this do?

• FFA makes the simple (1+1) EA slower on problems that it can easily 
solve.

• The slowdown is roughly proportional to the number of possible 
objective values.

• On some non-𝒩𝒫-hard problems for which the (1+1) EA needs 
exponential runtime, the (1+1) FEA needs polynomial mean runtime

• Plateaus of the objective are still plateaus under FFA

• FFA very significantly speeds up the (1+1) EA on the 𝒩𝒫-hard MaxSat 
problem



FFA: Now something weird…
• Let’s say you have an optimization problem with objective function 𝑓(𝑥)
• You encrypt the objective values and do not tell them to the algorithm

• Let’s say you apply AES, RSA, or the Cesar cypher as a function      𝑔:ℕ ↦ ℕ, i.e., do 𝑔 𝑓 𝑥
• Encryption removes any order, correlation or causality information, i.e., 𝑔 𝑓 𝑥 does not correlate with 𝑓 𝑥 in any way

• If the (1+1) FEA can find the optimum of 𝑓 𝑥 …
• …then it will find exactly the same solution in exactly the same runtime 

even if you apply it to the encrypted problem 𝑔 𝑓 𝑥
• …because encryption is a bijective transformation.



5. Summary

Slides Video



Summary

• Frequency Fitness Assignment (FFA) is an algorithm module that can be 
plugged into existing algorithms.

• It renders algorithms invariant under all injective transformations of 
the objective function value.

• It makes them optimize without bias for good solutions.

• It slows them down on easy problems.

• It can speed them up on hard problems.

• It is limited to objective functions that cannot take on too many 
different objective values.
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moptipy – A Python Package for Metaheuristics

• Implementations of 
several 
metaheuristics

• Run experiments in 
a parallel or 
distributed fashion

• Wrap algorithm 
implementations 
from other packages 
in a unified API

• Evaluate 
experiments



Optimization Algorithms: Free Online Book

• Work in progress

• Several algorithms 
explained (EA, 
SA,…)
• Everything is done 

by experiments 
and with code 
examples.

• Goal: Learn how to 
understand 
algorithms



bookbuilderpy: Automated Workflow for Books

• Automated 
workflow for 
building 
pdf/html/epub
books from 
Markdown

• Can be triggered 
via GitHub actions 
upon commit and 
auto-publish book 
to GitHub pages
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