Frequency Fithess Assignment

Prof. Dr. Thomas WEISE
Institute of Applied Optimization
School of Artificial Intelligence and Big Data, Hefei University




Frequency Fithess Assignment

Introduction into Optimization
Metaheuristic Optimization
Invariance Properties
Frequency Fitness Assignment

Summary

e RN Ve

Advertisement




1. Introduction into
Optimization




Introduction into Optimization

e Optimization means finding “superlatives”




Introduction: Optimization Problem




Introduction: Optimization Examples — TSP

* Traveling Salesperson

Problem (TSP): X = the set i
of all possible round-trip
tours through n given cities Beijing /

* f:X = R: length of the tour /. )

e optimal solution ian Nahjjng
x* = shortest possible tour Chongqmg /V/Vuhan s .S;;Iz;nghal

Changsha
Kunmln
H'(’ong Kong




Introduction: Optimization Examples — MaxSat

* Maximum Satisfiability
Problem (MaxSat): X = set
of all possible bit strings of
length n

* f: X » R: number of OR-
clauses left unsatisfied

* optimal solution
x* = bit string that satisfies
all OR clauses (and, hence,
makes the AND clause
become TRUE)
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Introduction: Optimization Examples — Packing

* 1-D Bin Packing Problem: X = all possible orders to pack n objects into
bins of a given size

* f: X » R: number of bins needed
 optimal solution x* = the packing needing the fewest bins
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Introduction: Optimization is Hard!

* Finding the globally optimal solution x* from the set of all possible
solutions X is often an N P-hard problem.

e Currently, there is no algorithm that can guarantee to find the optimal
solution of every instance of a given NV P-hard problem in a runtime that
is not longer than polynomial in the size of the problem (i.e., existing
algorithms may need exponential runtime in the worst case).

* In other words, if we want to guarantee to find the best possible solution
x™ for all possible instances of a problem, we often cannot really be much
faster than testing all possible candidate solutions x € X in the worst

Case.




2. Metaheuristic Optimization




Metaheuristic Optimization

 Metaheuristics follow
the Trial-and-Error
|dea of iterative
Improvement

* Drop the guarantee

to find the optimal I \
solution.
* Find good solution
within a feasible
runtime.
i
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Examples of Metaheuristics: (1+1) EA a.k.a. RLS

* Local Search with |S;| = |N;| = 1 is the simplest realization of the
metaheuristic idea

* accepts new solutions if better or equally good as current one

procedure (1+1) EA(f : X — R)
randomly sample z. from X; y. + f(z.);
while — terminate do

T, < move(Te); Yn < f(Tn);

if yp < ye then z. < z,; Yy < Yn;
return x., y.




Examples of Metaheuristics: Simulated Annealing

* SAis a local search that Morocedure SA(f : X — R, T, ¢)
accepts also worsening randomly sample z. from X; y. < f(x.);
moves, but with a TB ¢ Te; YB < VYo > preserve best!
probabmty that decreases T < 0; > 7 1s 1teration counter

over time AND with the ] While ~ terminate do
| T, < move(x.); yn < f(xn);

difference quality

T < T+ 1;
* Probability regulated by T+ To(1—¢e)™ 1 > 1" decreases over time
temperature schedule if Ry < ek;h then © always true if y,, < vy,
with parameters Ty and & Te = Tpj Yo < Yn;

if y. <yg then rg < x.; Yy + vy.:
return rp, yp




Examples of Metaheuristics: Standard Genetic Alg.

e Standard Genetic

_ _ procedure SGA(f : X — RT, ps, cr) > for maximization!
A|g0r|thm (SGA) with xg + 0; yp < —oo; > best-so-far solution
. . for j€1...psdo > random initial population
Fltnes.s Proportlonate randomly sample Sy[j|.x from X; Sy[j].y < f(Solj].x);
Selection (Roulette if So[j].y > ys then ap + Solj].z; ys « Soljl-;
RS : for:€0...00do > iterate “generations”
Wheel) for mMaximization for j€1...psdo > new pop. via mutation and crossover
. . if KR! < cr then N;[j].x < binary(S;[|n=]|].z, Si[|%]].z);
e Uses a population qf Size else N.[j]. + nove(Si{|5t|].0):
ps and unary and binary Niljly < F(Nilj].);
operator (with crossover if Niljl.y > yp then zp  Niljl.z; ys < Nilj].y;

Si11 < Roulette Wheel: select ps records from P; = S;UN;
such that, for each of the ps slots, the probability

of P;[j] to be chosen is proportional to P;[j].y.
return zg, yp

rate cr)




Metaheuristic Optimization

* Different metaheuristics realize the trial-and-error scheme differently

* They all prefer better solutions over worse ones.

* If they would always and only accept the better solutions, they could get trapped
in local optima.

* So they sometimes accept worse solutions, but the probability to choose a better
solution is always higher in average.

This is the most fundamental concept of metaheuristic optimization:

If you keep good solutions and modify them, you are
likely to get better solutions.

If you keep accepting better and better solutions, you
will get really good solutions eventually.



3. Invariance Properties




Invariance Properties

* Research in optimization, Machine Learning, and Artificial Intelligence
often use simple problems to try out and benchmark algorithms.

* These allow for many experiments in a short time.

* We often know the optimal solutions or bounds for their quality, we
can understand the results well.

* What we want is that algorithms perform similar to our benchmarking
results also on actual, real-world problems.

* We want invariance properties.




Invariance Properties: Example OneMax

* OneMax is simplest benchmark
problem in discrete
optimization.

* |t is defined over X = {0,1}",
i.e., bit strings of length n.

* “Find the bit string with all
ones.”

e “Maximize the number of
ones.”
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Invariance Properties: Example OneMax

* Now | create a modified version of 60 ey ----rqroomrmmpemsmsmeosrgrcsseees
this problem. N ] "‘-..i OheMax (50 bit) | |
---------- e I SO

* f2(x) = f1(x) + 10 Sonedd B e fi(x) | i
* Expectation: Any reasonable 40 .-------.'.‘.93,... ..... X *00s, i & f2(x)=f1{x)+10 |
algorithm should perform exactly i Do [ {15 SRR ’ |
the same on f; and f5. ] |t e 1 ol _'_'_c;._._ _______________________

* (1+1)-EA: acceptance decision | § "'.,. ey | ;
pased on f(xy) < f;) ¥ 2 oS S

* SA: acceptance decision basedon | B T . = %0, 1 '.,jb
e v 1 s e .

fx) = fxz) ' ' ' B %
= : o Zx = g

* SGA: acceptance decision based 1 J S S S S S S S S Pos
on ratio of f(xq) to f(x,) ¥ 0 10 20 30 40 50



Invariance Properties: Example OneMax

* Now | create a modified version of 60 feg -~y -rrmmmprmmmmmmmrmy oo
this prc'_ ;
. £,x)- The (1+1) EA and Simulated Anneallng are
* Expect invariant under translations of the +10_|
algorit J | . g
the sar objective function value.
e (1+1)-E j
based
.sa:acc  The Standard Genetic Algorlthm is not e,
fle) —flxa) ¥ | 5
* SGA: acceptance decision based o Lo i i i e, ot
on ratio of f(xq) to f(x,) ¥ 0 10 20 30 40 50



Invariance Properties: Example OneMax

e Now | create another modified
version of this problem.

* f3(x) = 0.8 * f;(x)

e Expectation: A reasonable
algorithm should perform exactly
the same on f; and f5.

e (1+1)-EA: acceptance decision
based on f(x;) < f(x,) ¥

e SA: acceptance decision based on
flx) — fxp) %

* SGA: acceptance decision based

on ratio of f(x1) to f(xy) ¥
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Invariance Properties: Example OneMax

* Now | create another modified B0~ RS e
versior

. f,c0- The (1+1) EA and the Standard Genetlc

* Expect Algorithm are invariant under scaling of 10
algorit e

the sar the objective function value.
* (1+1)-E j
based « X . .
+ SA: acc Simulated Annealing is not. o,
o =G s | | § e
* SGA: acceptance decision based 0 ‘ P S - S "!'."“

on ratio of f(x;) to f(x,) ¥ 0 10 20 30 40 50




Invariance Properties: Example OneMax

e Now | create another modified 2500
version of this problem.

* fa(0) = [1L(0)]? A

e Expectation: A nice algorithm
should perform exactly the same 1500

on f; and f;.
e (1+1)-EA: acceptance decision 1000

based on f(x;) < f(xy) v

* SA: acceptance decision based on 500
flxg) — fxg) %

* SGA: acceptance decision based 0
on ratio of f(x;) to f(x,) ¥ 0 10 20 30 40 50




Invariance Properties: Example OneMax

* Now | create another modified ~ 2500 gg-------op-ommmeeos
versior |
. .y - The (1+1) EA'is invariant under all order-
* Expect preserving transformations of the 5
shou e same :
on f; a objective function value. g
e (1+1)-E
based « ] .
.sa:acc  The Standard Genetic Algorithm and .
) Simulated Annealing are not. ’
SESGARECcontance decision based oo
on ratio of f(x;) to f(x,) ¥ 0 10 20 30 40 50



Now let’s enter eerie territory.




Invariance Properties:

* Now | create another modified
version of this problem: a trap.

) B 0 if f; (x) = 50
EESS {1 + f1(x) else
* Expectation: Algorithm

performance on f; (x) probably
does not carry over to fz(x).

* Neither the (1+1) EA, SA, nor
SGA can deal with this.

 The (1+1) EA has exponential
runtime on traps.

Example OneMax

50

40

30 |-

20 |-

10 |-

_______________________________

———————————————————————————————————————————

---------------------------------------------------------

bneMax ('50 bit)

© f1(x) .
e f5(x) Trap

_________________________________

----------------




Invariance Properties: Example OneMax

* Now | create another modified 60 - T R i
version: a w = 10 jump. | OneMax (50 bit) ! i

| L it W
* Insert a deceptive area of ; ; ; ; ;

length v — 1 = 10 before 40
optimum

* Expectation: Algorithm 30
performance on f; (x) probably

does not carry over to f(x). 20

* Neither the (1+1) EA, SA, nor | e fah MY RN ey

SGA can deal with this well. , %,
| | Ix . %0,
° The (1+1) EA a runtlme 0 L b 000 0 0 ~
exponential in « on jumps. 0 10 20 30 40 50



Invariance Properties: Example OneMax

* How about | apply an arbitrary oflx) @f7= b.,ect.on

bijection g that preserves the 575 l’ _________ E'.'"""',"‘Or'\'éMé)'((SO e —
optimum to f; (x) and get 250 |00 . . 4
f7(x) = g(f1(x))? 4 '
e Expectation: Algorithm 175
performance on f; (x) probably 150
does not carry over to f5(x). 1(2)(5)
* Neither the (1+1) EA, SA, nor 75

SGA can deal with this well. 50

25
* Indeed, there is no method that ¢
can deal with this well.
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Frequency Fitness Assignment: Making
Optimization Algorithms Invariant Under
Bijective Transformations of the

Objective Function Value

Thomas Weise ~, Member, IEEE, Zhize Wu, Xinlu Li, and Yan Chen
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4. Frequency Fithess Assignment




S
FFA: Idea

* Frequency Fitness Assignment (FFA) is a module that can be plugged
into different existing algorithms.

* [t changes the way the algorithm selects the interesting solutions S;, ¢
from the set P; = §; U N;.

* It therefore maintains a table Hwith the encounter frequency of each
objective value in the selection decisions.

* The table H is initially filled with zeros.

* Before the selection step of the algorithm, H|[f (P;[j])] Vj € 1..|P;] is
incremented by 1.

* Then, H[f(P;[j])] replaces f(P;]j]) in the actual selection decisions.
B




S e
FFA: (1+1) EA and (1+1) FEA

procedure (1+ 1) FEA(f : X +— N)
H + (0,0,---,0);
procedure (1+ 1) EA(f : X — R) randomly sample x. from X; y. + f(z.);
| TB < Te; YB < Yes
while — terminate do
Lp < move(xc)§ Yn < f(xn)a
Tn, ¢ mOVe(Zc); Yn ¢ f(Tn); Hly] + Hlyc] +1; Hlyn] ¢ Hlyn] + 1;

randomly sample z. from X; y. < f(x.);
while — terminate do

if Yn S Ye then Le < Tny Yo < Yns if H[yn] < H[yc] then
return Ze, ye Te 4 Tpi Yo 4 Yni

if y. < yp then zp < z.; yp < y;
return rg, yp




S
FFA: What does this do?

e Static optimization problems become dynamic, because frequency
fitness changes over time.

 Solutions get less attractive the more often their corresponding
objective values have been seen. This also holds for local optima...

* Solutions with better objective values are no longer preferred over
such with worse objective value.

* Instead, solutions with less-frequent objective values are preferred.

* An algorithm using FFA is invariant under all injective transformations
of the objective function value.

* They will perform identical on ALL of the OneMax-based functions
from before!



FFA: Discrete Optimization Theory Benchmarks
1 f(x)

25

15

5

number of 1 bits = X'x

7
&7 f(x) Plateau, n=32, w=|Vn]+1=6 §><;(X) Jump, n=32, w=[Vn] +1=6 <><><>Q

X (o)
% ot 00000
- Xxx 5 OOO
To Xx y 0,
XXaexxxxx| | \ O
Ve number of 1 bits = X'x number of 1 bits = Xx !
o 1 } 1 } ] ] x ] | J | J | J L]

OO S UG 1SR D0k 25 a0R 0, oV ER 5 ok o5 a1
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S
FFA: (1+1) FEA on OneMax

* Average runtime = g vne[3...333]: 3333 runs
of (1+1) EA on 3333<n<8192: 71 runs
OneMax is in d
O(nlnn) =

* Average runtime
of (1+1) FEA on o
OneMax seems to i
be slower by factor |
proportional in n, Sl
i.e., seems to be in

OneMax (Log-Log)

scale n

5 10 20 50 100 200 500 1000 2000 5000

O(n?Inn). °9"', G,




S e
FFA: (1+1) FEA on TwoMax

* One local and

opposite global - |2 TwoMax (Log-Log) e (1+1)EA
optimum of almost ™ |¢ —
same size ] ey
21
* Average runtime 0
of (1+1) EA on « |5
TwoMax is >
exponential = il
L R
* (1+1) FEA has a Y < FFA: ne[3...333]: 3333 runs
mean runtime that = pure: n€[3...32]: 71 runs scale n
A o T T T 1 1 T
TEEanie be in 5 5 10 20 50 100 200
O(n“Inn).



—
FFA: (1+1) FEA on Trap

* Average runtime

of (1+1) EAon Trap _ | Trap (Log-Log) — e
is exponential "=

* (1+1) FEA behaves ‘o- & n
the same as on £ i
OneMakx, i.e., has "o LT ol
polynomial mean B e
runtime ol S g

FFA: ne[3...333]: 3333 runs
pure: ne[3...32]: 71 runs

scale n
I

20

50 100 200




e —
FFA: (1+1) FEA on Jump

* Average runtime
O w=|n/2]-1 AAAAAR
j)f (1+1) EA on 10° 4 A 4w= [ ]+ Ot 444
SR + w=Lvn o0 © +++1+T
i AA+t
exponential in 105 2 it H: 2}*1 O e T ol
jump width w - O—LA_A:E#__'__A_-L*_?E%.%_»@X—-—X- —i;
4 | A 000069
e (1+1) FEA behaves AR //:*__*_&*.*-X-X-x.x-X-Q--QQ-Q'Q‘Q"'Q s2ins
the same as on S NSRSy Y ¥ Y L R
OneMax for all 10" 3 canspaagas s*
. : (1+1)EA
Jiuem[r)];vsldths w, o £ w-Jump (Log-Log) T (1+1)FEA
] °) . 10 15 2|O I 2| T
polynomial mean (st e N A RN et o g 1o 512 30
runtime lvnl: 2 2 3 4 1315147215
|In nJ: 2 3 S



FFA: (1+1) FEA on

* Average runtime
of (1+1) EA on
Plateaus is
exponential in
plateau width w

e (1+1) FEA is a bit
slower, probably
proportional to a
factor linear inn

e Plateaus remain
plateaus under FFA

Plateau
o w=|n2l1 | w-Plateau (Log-Log) 60 4O
108 4 A = [Vn]+1 000 O00
+ w=[n] o o AAA
X ws=[Inn]+1 0° JoRalA + +
6 o o] + 4 ++ +
10° 4 © w=lInn] — ggAAA ;AAAAA
: c2agefyaarasttily
LL o 7+ ¢$¢$
10° < RXAA§§KQ$$$§§xXXxXXX
© $$ §$$$§9000000000000
S 8 $ % X % X 5
1&t*§300000°°°°
b (1+1) EA: mean(RT)
o e (1+1) FEA: mean(RT)
10 15 20 o5 30
InN2]1: 2 3344556677889 91010111112121313141415
INn]: 2 3 4 5
[In n]: 2 3



S
FFA: (1+1) FEA on MaxSat

* The Maximum Satisfiability Problem (MaxSat) is NV P-hard

 SatLib provides satisfiable benchmark instances from the phase
transition region (i.e., the hardest type of instances) for different scales

n € {20} U {25i Vi € 2..10}.
* We conduct 11’000 runs with the (1+1) FEA on each instance scale.

 The (1+1) EA is very much slower than the (1+1) FEA, so we can use it
only on smaller scales.

 Our computational budget is always 101° FEs.




FFA: (1+1) FEA on MaxSat

—

instance

e The FEA is 0985  1.91%108  0.015 1 3091 0
better on 0748  3.56+10°  0.299 1 93'459 0
oroblems 0583  7.41x10° 0528 1 490'166 0
with 250 L 214+10° 0
variables 1 5.27 % 10° 0
R 1 1.40 = 107 0
EA on 1 5.78 * 107 0
oroblems 0.991  244x10%  0.00945
with 50. 0994 243108  0.00555

uf250_%* 0.992 2.43 % 108 0.00782




FFA: (1+1) FEA on MaxSat — ERT-ECDF

1.0

0.8 1

— EA N=20
-« EA N=50
— EA N=75

0.6 1

0.4 -

0.2-

0.0

fraction of solved instances

FEA,N=20

FEAfN=50

FHA,N=7/5

FEA,n=100
PEA,N=125
FEA,N=150
FEA,N=175
FEA,n=200
FEA,Nn=225
FEA,n=250

ey




S
FFA: What does this do?

* FFA makes the simple (1+1) EA slower on problems that it can easily
solve.

* The slowdown is roughly proportional to the number of possible
objective values.

* On some non-/N"P-hard problems for which the (1+1) EA needs
exponential runtime, the (1+1) FEA needs polynomial mean runtime

* Plateaus of the objective are still plateaus under FFA

* FFA very significantly speeds up the (1+1) EA on the NV P-hard MaxSat
problem




FFA: Now something weird...

* Let’s say you have an optimization problem with objective function

f(x)
* You encrypt the objective values and do not tell them to the algorithm
* Let’s say you apply AES, RSA, or the Cesar cypher as a function
g:N - N, ie., dog(f(x))
* Encryption removes any order, correlation or causality information, i.e.,
g(f(x)) does not correlate with f(x) in any way

* If the (1+1) FEA can find the optimum of f(x)...

e ...then it will find exactly the same solution in exactly the same runtime
even if you apply it to the encrypted problem g(f(x))

e ...because encryption is a bijective transformation.
e



5. Summary




Summary

* Frequency Fitness Assignment (FFA) is an algorithm module that can be
plugged into existing algorithms.

* It renders algorithms invariant under all injective transformations of
the objective function value.

* It makes them optimize without bias for good solutions.
* It slows them down on easy problem:s.
* It can speed them up on hard problems.

* It is limited to objective functions that cannot take on too many
different objective values.
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Frequency Fitness Assignment: Optimization
without Bias for Good Solutions can be Efficient

Thomas Weise, Zhize Wu, Xinlu Li, Yan Chen, and Jorg Lassig

Abstract—A fitness assignment process transforms the features
(such as the objective value) of a candidate solution to a
scalar fitness, which then is the basis for selection. Under
Frequency Fitness Assignment (FFA), the fitness corresponding
to an objective value is its encounter frequency in selection steps
and is subject to minimization. FFA creates algorithms that are
not biased towards better solutions and are invariant under
all injective transformations of the objective function value. We
investigate the impact of FFA on the performance of two theory-
inspired, state-of-the-art EAs, the Greedy (2+1) GA and the
Self-Adjusting (1+(\,A\)) GA. FFA improves their performance
significantly on some problems that are hard for them. In our
experiments, one FFA-based algorithm exhibited mean runtimes
that appear to be polynomial on the theory-based benchmark
problems in our study, including traps, jumps, and plateaus. We
propose two hybrid approaches that use both direct and FFA-
based optimization and find that they perform well. All FFA-
based algorithms also perform better on satisfiability problems
than any of the pure algorithm variants.

Index Terms- -Frequenc— Fitness Assigrment, Evo
‘onarr  Igo ™, F OneM- - Ty 1X, e
fu au p uee y

1S L an 0\%

single-objective optimization algorithm [3].! Only random
sampling, random walks, and exhaustive enumeration have
similar properties and neither of them is considered to be an
efficient optimization method.

One would expect that this comes at a significant perfor-
mance penalty. Yet, FFA performed well in Genetic Program-
ming tasks with their often rugged, deceptive, and highly
epistatic landscapes [4], [1] and on a benchmark problem
simulating such landscapes [5]. While the (1-+1) EA has expo-
nential expected runtime on problems such as Jump, TwoMax,
and Trap, the (141) FEA, the same algorithm but using FFA,
exhibits mean runtimes that appear to be polynomial in exper-
iments and also solves MaxSat problems much faster than the
(1+1) EA [3].

These inter ing propertic and resultr ead ‘> the
question wb - FFA cov’ Iso benefi* ate-r >-art
bl: k-box euristics. ‘s article 2 ate
tt >ehav FrA v g intc o-
r ‘h o2 ' 1, t-

l
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T Weise, Z Wu, X Li, Y Chen, and J Lassig. Frequency Fitness Assignment: Optimization without Bias for Good Solutions can
be Efficient. IEEE Transactions on Evolutionary Computation. Early Access 2022.
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ARTICLE INFO ABSTRACT

Article history: As the number of practical applications of discrete black-box metaheuristics is growing faster and
Received 15 August 2019 faster, the benchmarking of these algorithms is rapidly gaining importance. While new algorithms
Received in revised form 6 March 2020 are often introduced for specific problem domains, researchers are also interested in which general
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; . : problem characteristics are hard for which type of algorithm. The W-Model is a benchmark function for
Available online 6 April 2020

discrete black-box optimization, which allows for the easy, fast, and reproducible generation of prob-

Keywords: lem instances exhibiting characteristics such as ruggedness, deceptiveness, epistasis, and neutrality in
Experimentation a tunable way. We conduct the first large-scale study with the W-Model in its fixed-length single-
Benchmarking objective form, investigating 17 algorithm configurations (including Evolutionary Algorithms and local
Optimization searches) and 8372 problem instances. We develop and apply a machine learning methodology to
Runtime behavior automatically discover several clusters of optimization process runtime behaviors as well as their

Black-box optimization

3 P reasons grounded in the algorithm and model parameters. Both a detailed statistical evaluation
Discrete Optlleathn

and our methodology confirm that the different model parameters allow us to generate problem
instances of different hardness, but also find that the investigated algorithms struggle with different
problem characteristics. With our methodology, we select a set of 19 diverse problem instances with
which researchers can conduct a fast but still in-depth analysis of algorithm performance. The best-
performing algorithms in our experiment were Evolutionary Algorithms applying Frequency Fitness
Assignment, which turned out to be robust over a wide range of problem settings and solved more
instances than the other tested algorithms.

© 2020 Elsevier B.V. All rights reserved.
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Solving Job Shop Scheduling Problems
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ABSTRACT

The most basic concept of (meta-)heuristic optimization is to prefer
better solutions over worse ones. Algorithms utilizing Frequency
Fitness Assignment (FFA) break with this idea and instead move
towards solutions whose objective value has been encountered less
often so far. We investigate whether this approach can be applied to
solve the classical Job Shop Scheduling Problem (JSSP) by plugging
FFA into the (1+1)-EA, i.e., the most basic local search. As represen-
tation, we use permutations with repetitions. Within the budget cho-
sen in our experiments, the resulting (1+1)-FEA can obtain better
solutions in average on the Fisher-Thompson, Lawrence, Applegate-
Cook, Storer-Wu-Vaccari, and Yamada-Nakano benchmark sets,
while performing worse on the larger Taillard and Demirkol-Mehta-
Uzsoy benchmarks. We find that while the simple local search with
FFA does not outperform the pure algorithm, it can deliver surpris-
ingly good results, especially since it is not directly biased towards
searching for them.
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1 INTRODUCTION

The Job Shop Scheduling Problem (JSSP) [8, 23] is one of the most
prominent and well-studied scheduling tasks. In a JSSP instance
there are m machines and n jobs. Each job must be processed once
by each machine in a job-specific sequence and has a job-specifir
processing time on each machine. The goal is to find an assignmen
of jobs to machines that results in an overall shortest makespar
i.e., the schedule which can complete all the jobs in the shorte:
time.

The JSSP is NP-hard [9, 23]. This means that solving JSSP i
stances to guaranteed optimality may not be feasible in practic
applications. Reaching tF - optimal makespans may often take tc
long in real-world scer s. Instead, JSSPs are often ar vroache
heuristically, by algor thattry tof  good app nate s

lutio’ * within an ar short tir ile hev anmn
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Abstract—Metaheuristic optimization is based on the idea
that better solutions are preferable to worse ones. Frequency
Fitness Assignment (FFA) is a module that can be plugged into
most optimization algorithms. It replaces the objective values
in the selection step with their encounter frequency during
the search so far. The search effort is therefore distributed
evenly over the whole range of the objective values. Recently,
it was shown that using FFA can significantly improve the
performance of algorithms on hard problems such as Trap and
Jump functions and the NP-hard MaxSat problem. However, the
objective functions of all of these problems have relatively small
ranges. This work is the first to explore the impact of FFA on
metaheuristics for solving Traveling Salesperson Problem (TSP)
instances, whose objective values tend to cover a wider range. We
plug FFA into the (1+1) EA to obtain the (1+1) FEA. We perform
extensive experiments on 18 instances from TSPLIB using two
different unary search operators. We find that the (1+1) FEA
does not get stuck in local optima and can solve many more
instances to optimality than the (1+1) EA. However, it tends to be
slower in reaching good intermediate solutions. Its performance
decreases with the problem scale and the number of different
possible tour lengths.
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bad. Instead, solutions are preferred whose objective values y
have a lower encounter frequency H|y| during the search so
far.

Algorithms using FFA attempt to visit all possible objective
values (including the optimal one) equally often. This leads to
two remarkable properties:

1) FFA creates optimization processes that are not biased
towards good objective values but, instead, towards
solutions with rare objective values [2].

2) It makes algorithms invariant under all injective trans-
formations of the objective function value [3].

One would expect that such a different optimization ap-
proach would lead to a very bad performance. After all,
the only traditional algorithms without a bias toward better
solutions are random wa’  random sampling, and exhaustive
enumeration, which ar orst-performin  approaches for

mo-  roblems. Surpr wever, FFA 1 significantly
the perforn veral alg v on several

ms. The - +1) E exponential

ime o oM pr M
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T Liang, Z Wu, J Lassig, D van den Berg, and T Weise. Solving the Traveling Salesperson Problem using Frequency Fitness
Assignment. In Proceedings of the IEEE Symposium on Foundations of Computational Intelligence (IEEE FOCI'22), part of
the IEEE Symposium Series on Computational Intelligence (SSCI 2022). December 4-7, 2022, Singapore
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moptipy — A Python Package for Metaheuristics

moptipy 0.9.57 documentation » The Metaheuristic Optimization in Python Package.
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Table of Contents

The Metaheuristic Optimization
in Python Package.
1. Introduction
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3. How-Tos
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A metaheuristic algorithm can be a black-box method, which can solve problems without deeper knowledge about
their nature. Such a black-box algorithm only requires methods to create and modify points in the search space and to
evaluate their quality. With these operations, it will try to discover better solutions step-by-step. Black-box metaheuris
tics are very general and can be adapted to almost any optimization problem. They allow us to plug in almost arbitrary
search operators, search spaces, and objective functions. But it is also possible to develop algorithms that are tailored
to specified problems. For example, one could either design the search operators and the optimization algorithm as a
unit. Then, the algorithm could change its way to sample new points based on the information it gathers. Or one could
design an algorithm for a specific search space, say, the "-dimensional real numbers, which could then make use of
the special features of this space, such as arithmetic and geometric relationships of the points within it. Or one could
design an algorithm for a specific problem, making use of specific features of the objective function. Finally, there are
multi-objective optimization problems where multiple, potentially conflicting, criteria need to be optimized at once.

Within our moptipy framework, you can implement algorithms of all of these types under a unified API. Our package al
ready provides a growing set of algorithms and adaptations to different search spaces as well as a set of well-known
optimization problems. What moptipy also offers is an experiment execution facility that can collect detailed log infor

implementations
from other packages
in a unified API

* Evaluate
experiments

mation and evaluate the gathered results in a reproducible fashion. The moptipy API supports both single-objective and _
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Figure 4.5: Different algorithms may perform best at different points in time.

Figure 4.5, for instance, illustrates a scenario where the best algorithm to choose depends on the

available computational budget. Initially, an algorithm B produces the better median solution quality.

Eventually, it is overtaken by another algorithm A, which initially is slower but converges to better
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ing game, where | win 128 times (red) and you only 32 times

it seems unlikely to you that | would win four times as often as
ted onyou, i.e., if used a “fixed” coin with a winning probability
Hj is that | cheated. Unfortunately, it is impossible to make
g probability if | cheated apart from that it should be bigger

bothesis H: | did not cheat, the coin is fair and both of us have

assumption you can compute the probability that | would win
coin tosses. Flipping a coin n times is a Bernoulli process. The
s in n coin tosses is then:
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bookbuilderpy: Automated Workflow for Books

Top » bookbuilderpy: Building Books from Markdown

Table of Contents

bookbuilderpy: Building Books
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bookbuilderpy: Building Books from Markdown
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e support the automatic download and inclusion of code snippets from git repositories,

¢ allow the book to be written in multiple languages, and finally

e automatically generate a website that lists all produced files so that you can copy everything to
a web folder and offer your work for download without any further hassle.

Let us say you are a university or college lecturer or a high school teacher. You want to write a lecture
script or a book as teaching material for your students. What do you need to do?

Well, you need to write the book in some form or another, maybe in LaTeX or with some other editor.
But usually your students would not want to read it like that, instead need to “compile” it to another
format. OK, so you write the book and compile it to, say, pdf. Then you need to deliver the book, i.e.,
upload it to some website so that your students can access it. Thus, everytime you want to improve or
change your book, you have to run the process change the text -> compile the text -> upload the
result. The last two steps have nothing to do with actually writing the book, they just eat away your
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