
Multiobjective Genetic Programming for

Maximizing ROC Performance

Pu Wanga, Ke Tanga, Thomas Weisea, E.P.K Tsangb, Xin Yaoc

aNature Inspired Computation and Applications Laboratory (NICAL)

School of Computer Science and Technology

University of Science and Technology of China (USTC), Hefei, Anhui 230027, China.
bDepartment of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.

cCenter of Excellence for Research in Computational Intelligence and Applications (CERCIA)

School of Computer Science, The University of Birmingham Edgbaston, Birmingham B15 2TT, U.K.

Abstract

In binary classification problems, receiver operating characteristic (ROC) graphs are

commonly used for visualizing, organizing and selecting classifiers based on their per-

formances. An important issue in the ROC literature is to obtain the ROC convex hull

(ROCCH) that covers potentially optima for a given set of classifiers [1]. Maximizing

the ROCCH means to maximize the true positive rate (tpr) and minimize the false pos-

itive rate (fpr) for every classifier in ROC space, while tpr and fpr are conflicting with

each other. In this paper, we propose Multiobjective Genetic Programming (MOGP)

to obtain a group of nondominated classifiers, with which the maximum ROCCH can

be achieved. Four different multiobjective frameworks, including Nondominated Sort-

ing Genetic Algorithm II (NSGA-II), Multiobjective Evolutionary Algorithms Based

on Decomposition (MOEA/D), Multiobjective selection based on dominated hypervol-

ume (SMS-EMOA), and Approximation-Guided Evolutionary Multi-Objective (AG-

EMOA) are adopted into GP, because all of them are successful applied into many

problems and have their own characters. To improve the performance of each individ-

ual in GP,we further propose a memetic approach into GP by defining two local search

strategies specifically designed for classification problems. Experimental results based

on 27 well-known UCI data sets show that MOGP performs significantly better than

singleobjective algorithms such as FGP, GGP, EGP, and MGP, and other traditional

machine learning algorithms such as C4.5, Naive Bayes, and PRIE. The experiments

also demonstrate the efficacy of the local search operator in the MOGP framework.

Keywords: Classification, ROC analysis, AUC, ROCCH, Genetic Programming,

Evolutionary Multiobjective Algorithm, Memetic Algorithm, Decision tree.

This is a preview version of paper [2] (see page 31 for the reference). It is posted here

for your personal use and not for redistribution. The final publication and definite

version is available from Elsevier (who hold the copyright) at

∗Emails: wuyou308@mail.ustc.edu.cn, ketang@ustc.edu.cn

Preprint submitted to Elsevier January 18, 2017

http://www.sciencedirect.com/. See also

http://dx.doi.org/10.1016/j.neucom.2012.06.054.

1. Introduction

Classification [3] is one of the most important areas in machine learning. Here,

the goal is to find assignments of classes to un-classified and unseen instances (data

samples) based on information previously learned. In the most common case, referred

to as binary classification, there are two classes or categories and all instances in a data

set belong to one of them. Solving classification problems basically means to design

good classifier(s) which make right assignments as often as possible.

One open question is how to measure the performance of a classifier. If classifiers

are synthesized with optimization algorithms, the choice of the performance measure

will have tremendous impact on the results that we will obtain. Simple classification

accuracy, though being used as the performance metric for a long time is actually not

a good choice [4]. The receiver operating characteristics, or ROC for short, has been

claimed as a generally useful performance visualizing method because its properties

are not sensitive to skewed class distributions or unequal misclassification costs, two

characteristics which are known to have a negative impact on the utility of the accuracy

measure.

The ROC graph is a technique for visualizing, organizing and selecting classifiers

based on their performance [1]. It has been widely used in signal detection [5], med-

ical decision making [6], and other fields over the course of the past 40 years. In

recent years, because of the ever-increasing use of ROC graphs in the machine learn-

ing community, the ROC analysis became a central technique for tackling classification

problems. The ROC curve, an important topic in ROC analysis, is obtained by vary-

ing discriminative thresholds over the output of a classifier [1]. The Area under the

ROC curve (AUC) is accepted as a fair indicator to measure the classifier performance

for binary classification, since it is invariant to operating conditions such as different

misclassification costs and skewed class distributions [7]. ROCCH, another important

topic in classification problems, represents the convex hull of a set of points (hard clas-

sifiers) obtained from several curves (i.e., soft classifiers) [8]. A classifier is potentially

optimal if and only if it touches the ROCCH. Otherwise, we can always find a better

classifier. It is possible to get a potentially optimal classifier in ROCCH even if the

data sets have skewed class distributions or misclassification costs. Actually, we can

consider the ROC curve as a special ROCCH when there is only a single soft classifier.

This means that ROCCH could work more powerfully than a plain ROC curve. Conse-

quently, we mainly consider the ROCCH in this paper and we will focus on searching a

group of classifiers to maximize the ROCCH performance and not only try to maximize

the AUC of a single soft classifier in binary classification problems.

In this paper, we utilize GP combined with multiobjective techniques to approxi-

mate the optimal ROCCH. This work empirically investigates multiobjective genetic

programming (MOGP) with four different frameworks on binary clasiification prob-

lems. We show that local search strategies can play a key role in GP for classification

problems and that special local search operators can improve the performance.

2

http://www.sciencedirect.com/
http://dx.doi.org/10.1016/j.neucom.2012.06.054

This paper is organized as follows: Section 2 outlines the related work and in Sec-

tion 3, we introduce the background and basic algorithms used in our research. Sec-

tion 4 will describe our framework to classification problems and presents local search

operators working in GP. Experiments are studied in Section 5 where four research

questions are answered. Section 6 provides the conclusion and a discussions on the

important aspects and future perspectives of this work.

2. Related Work

2.1. ROCCH in Classification

The roots of ROCCH maximization problems can be traced back to [8]. In that

work, iso-performance lines1 are translated by operating conditions of classifiers and

used to identify a portion of the ROCCH, by which we can choose suitable classifiers

for data sets with different skewed class distribution or misclassification costs. In [9],

a combination of rule sets to produce instance scores indicating the likelihood that an

instance belongs to a given class is described.

Flach et al. [10] investigated a method to detect and repair concavities in ROC

curves. The basic idea here is that if a point lies below the line spanned by two other

points in ROC, then it can be mirrored to a better point which could perform well

beyond the original ROC curve. This can be used to expand the ROCCH. Prati [11]

introduced a rule selection algorithm based on ROC analysis to find minimal rule sets

with compatible AUC values. Here, selection is based on whether a rule can improve

the current ROCCH.

In [12], a method which takes Neyman-Pearson lemma [13] as the theoretical basis

for finding the optimal combination of classifiers to maximize the ROCCH is given.

Fawcett [14] presents a method for learning rules directly from ROC space. This

method utilizes the geometrical properties of the ROC to generate new rules to max-

imize the ROC performance. Essentially, all above work are searching a rule sets to

maximize ROCCH.

2.2. Genetic Programming for Classification

Genetic programming (GP) [15] is a branch of Evolutionary Algorithms (EAs).

Standard GP has a tree-like representation which can be generated by modular, gram-

matical, and developmental methods [16]. Tree-based classifiers have a long tradition

in machine learning citepthe-reference-to-c4.5. They are considered to be more ex-

plicit, intuitive, and interpretable than, e.g., Neural Networks. GP therefore has widely

been used for solving classification problems [17, 18].

An example of using GP to evolve regression rules for a data set with intertwined

spirals pattern is already given in Koza’s 1992 book [15]. Another early work [19]

used in image recognition dates 20 years back. In the area of data mining, GP has

been applied most successful in two particular fields: One is classification for data

sets with different misclassification costs, as GP is suitable for cost-sensitive learning.

1All classifiers corresponding to the points on one line have the same expected costs.

3

[20], e.g., focused on financial forecasting problems by consolidating two types of

misclassification errors into a single objective function. GP involving cost-sensitive

learning has furthermore been adopted in filtering junk E-mail [21].

The second field is classification of imbalanced data sets, i.e., data sets where one

class occurs much more often than the other – one of the areas where the accuracy

metric may become useless. [22] adopt GP to bankruptcy prediction, a prime example

for this issue as there are significantly more solvent firms than defaulting ones. Patter-

son [23] gave a new fitness function for GP applied on highly imbalanced database.

Moreover, Bhowan et al. [24] proposed a multiobjective genetic programming ap-

proach to evolving accurate and diverse ensembles of genetic program classifiers with

good performance on both the minority and majority classes.

Many technologies have been combined with GP to improve the classification per-

formance in these two fields, ranging from ensemble learning over multiobjective meth-

ods to local search strategies. As both imbalanced problems and different misclassifi-

cation costs can be included in the ROCCH [8], this work will focus on GP for max-

imizing the ROCCH. It should further be mentioned that there is a strong analogy of

ROCCH and the Pareto front in multiobjective optimization [25].

In this paper, we use multiobjective GP (MOGP) to approximate the optimal ROCCH.

We empirically investigate MOGP with four different frameworks on binary classifi-

cation problems. Additionally, we show that local search strategies can play a key

role in GP for classification problems as special local search operators can carefully be

designed to improve the performance.

3. ROCCH, Classification, and Multiobjective Optimization

3.1. Overview of ROCCH in Classification Problems

3.1.1. ROC Graph and ROCCH

In binary classification problems, each instance I in the data set is marked a certain

label from the set {p, n} of positive and negative class labels. A classifier is a mapping

from instances to predicted classes, and accuracy is the most commonly used evalua-

tion measure. However, its disadvantage are known for a long time [26]. Generally,

accuracy is not a suitable metric for cost sensitive and skewed class distribution clas-

sification problems. To overcome the weakness of accuracy, ROC analysis has been

introduced in machine learning. [27] demonstrated the value of ROC curves in evalu-

ating and comparing algorithms. An important tool of ROC analysis is the ROC graph

which is used to visualize the performance of classifiers. The X axis and Y axis of

ROC graphs display the true positive rate(tpr) and false positive rate (fpr). The per-

formance of a hard or discrete classifier on a data set can be mapped in a single point

in this graph. The upper left point (0, 1) represents a perfect classifier which predicts

positive (or Yes) to all positive instances and negative (or No) to all negative instances.

The points in lower right area are conservative classifiers which produce more nega-

tive labels than positive labels. In contrast, the points in upper right area are liberal

classifiers. All the points along the diagonal are totally random classifier and all classi-

fiers below the diagonal have worse-than-random performance. A soft classifier which

4

produces a continuous output (e.g. an estimate of an instance’s class membership prob-

ability) can be mapped in a set of points by varying the threshold. These points then

form a ROC curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

A

B
Convex Hull

C

a

b

c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Perfect
Classification

Conservative
Classification

Liberal
Classification

Random
performance
Classification

AUC=0.85

Figure 1: ROC Graph and ROCCH

The ROCCH is the convex hull of the set of points in ROC space. These can be

obtained from discrete classifiers and soft classifiers alike. The ROC curve of a soft

classifier can directly be considered as a ROCCH if there is only one soft classifier. The

right side of Fig. 1 shows a convex hull over three different ROC curves. Scott [28]

and Fawcett [1] have pointed out that two existing classifiers can be used to create a

realizable classifier whose performance (in terms of ROC) lies on the line of connect-

ing the performance of its two endpoints. Hence, any classifiers whose performances

are below the ROC convex hull could be defeated by realizable classifiers. A demon-

stration is shown on the right side of Fig. 1. There are two realizable classifiers whose

performance (point b and c) are better than the performance of point a, which is under

the ROC convex hull. Point b has the same fpr with point a, but its tpr is higher. Point

c has the same tpr with a, but its fpr is lower. More generally, all the classifiers whose

performances are under the convex hull are not optimal. In other words, a classifier is

potentially optimal if and only if it lies on the convex hull of the set of points in ROC

space [1].

In the following, we will give an example of using ROCCH to search optimal points

for different situations such as data sets with different error costs and class distributions.

One important target of classification problems is to minimize the total error costs.

Suppose c(Y, n) is the cost of a false positive error, c(N, p) is the cost of a false negative

error, and Ntr is the number of total instances. The class distributions of the data set

are noted by the classes’ a priori probabilities p(p) and p(n) = 1 − p(p). The total

error costs can be represented as Eq. 1.

Cost = Ntr · p(n) · fpr · c(Y, n) +Ntr · p(p) · (1− tpr) · c(N, p) (1)

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Convex Hull

α

β

C1

C2

Figure 2: Find optimal classifiers in ROCCH

If there are two points (tpr1, fpr1) and (tpr2, fpr2) that have the same total error
costs, we can get Eq. 2

tpr1− tpr2

fpr1− fpr2
=

c(Y, n)p(n)

c(N, p)p(p)
= m (2)

In Eq. 2, m is defined as a slope of an iso-performance line in [8]. In other words, all

the classifiers corresponding to the points on an iso-performance line have the same

expected cost. Moreover, each set of class and cost distributions (the middle term of

above equation) defines a family of iso-performance lines. Moving the iso-performance

line until it gets in contact with a point in ROCCH, the joint point with a larger tpr-

intercept (means the tpr-intercept of the line determined by joint point and the slop in

ROC graph) represents a classifier which can produce lower expected cost.

In Fig. 2, there are two iso-performance lines: α with m = 10 and line β with

m = 0.1. Imagine a scenario where the data set has a class distribution where the

negatives outnumber the positives by 10 to 1, but the costs of false positives equal to

the false negative costs. A classifier with performance at C1 is suitable for this data set

and achieves the minimal expected cost in this ROCCH. Consider another scenario in

which a data set has a balanced class distribution, but the problem is very cost sensitive.

If a false negative is ten times as expensive as false positive, the suitable classifier is

located at C2 which is on the iso-performance line β with m = 0.1.

3.2. ROCCH and Multiobjective Problems

Essentially, the ROCCH maximization problem aims at finding a set of classifiers to

approximate the upmost line and the leftmost line in ROC space as closely as possible.

Obviously, the ideal performance is point (0, 1) which is not easy (and sometimes

impossible) to reach. The goal is to find classifiers with a low fpr and a high tpr at the

6

same time. These two objectives are conflicting because if the classifier labels more

instances as positives, it will produce less negatives and vice versa. That means fpr

and tpr are closely related – and this relationship is not positive. Hence, a ROCCH

maximization problem can be considered as a multiobjective optimization problem.

However, minor difference exists between these two concepts. In [25], it is claimed

that ROCCH is analogous to the Pareto front (PF) in multiobjective optimization, but

no details are given. Here we will describe the relationship between ROCCH and the

PF more clearly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Convex Hull

 ROCCH
 Pareto front

Pareto front

Figure 3: ROCCH and Pareto front

Generally, multiobjective optimization problems (MOP) can be stated as follows:

maximize F (x) = (f1(x), . . . , fm(x))

subject to x ∈ Ω (3)

In Eq. 3, x is the decision variable and F (x) is a vector function representing objective

values. In many MOPs, x is continuous and all the objectives are continuous over

x. These problems 3 are called continuous MOPs. An important term in MOP is

dominance which can be defined as: Let u = (u1, . . . , um), v = (v1, . . . , vm) be

two vectors, u is said to dominate v if ui ≤ vi for all i = 1. . .m, and u 6= v, this

is noted as u ≺ v. If u and v do not dominate each other, we say that u and v are

nondominated. The nondominated set is a set that each item does not dominate any

another one. A point x⋆ is called Pareto optimal if there is no x ∈ Ω such that F (x)
dominates F (x⋆) [29, 30]. Pareto set (PS) is the collection of all Pareto optimal points.

The Pareto front is the set of all the Pareto objective vectors PF = {F (x)|x ∈ PS}.

Most of the works on multiobjective optimization methods are searching the PS

and PF, which can be realized in many different ways [31, 32, 33, 34]. In this work,

7

multiobjective optimization for ROCCH maximization is defined as follows:

F (x) = (ffpr(x), ftpr(x))

minimize F1(x) = ffpr(x)

maximize F2(x) = ftpr(x)

subject to x is a classifier (4)

If we take F1(x) = −ffpr(x), the above formulation is almost the same as the general

MOP. The only difference is that the classifier variable x in Eq. 4 is discrete, whereas

many multiobjective optimization algorithms have been designed for numerical prob-

lems. We will discuss this issue in detail later and give techniques for that situation.

First, let us discuss the relationship between the ROCCH and the Pareto front in

multiobjective optimization. In Fig. 3, ROCCH is marked as blue lines and the Pareto

front is marked with red broken lines. Any dominated point must obviously be con-

tained under the ROCCH. Hence, the set of dominated solutions contributes nothing

to the ROCCH. The points on the ROCCH therefore must be in the nondominated

set. Secondly, not all solutions in nondominated set have contribution to the ROCCH

(the points at concavity of the nondominated set are not on the ROCCH). However,

when the curve constructed by nondominated set is smooth enough that the difference

between ROCCH and Pareto front can be ignored. Hence, the target of using multi-

objective optimization to solve ROCCH maximization is to search the nondominated

solutions.

4. Multiobjective Genetic Programming for ROCCH Maximization

As discussed, we propose to use multiobjective optimization techniques and GP

to solve ROCCH maximization problem. Although there exist several evolutionary

multiobjective frameworks, most of them are designed for continuous MOPs, and it is

unclear which of them suits our problem best. Thus, GP is embedded into four popular

MO frameworks to find the suitable Evolutionary Multiobjective Algorithm (EMOA)

for ROCCH maximization problems. In this section, we discuss a new framework of

GP for classification problem as well as different EMOA strategies in detail. Addition-

ally, to improve the performance of individuals in GP, special local search operators

are introduced into multiobjective genetic programming (MOGP) system.

4.1. GP framework for Classification Problems

GP, like all EAs, maintains a population of candidate solutions. In each iteration

of the GP algorithm – referred to as generation – this population undergoes selection

and reproduction steps. The three main components of the algorithm are the selec-

tion, mutation, and crossover strategies. The latter two, of course, have to be adapted

to the tree-based structure of the candidate solutions. Mutation is most often real-

ized by replacing a sub-tree of a solution with a new, randomly created one and tree-

recombination often avails to the exchange of sub-trees of two parent individuals. For

the first generation, random trees are created by using Koza’s well-known ramped-half-

and-half method [15]. The framework of GP for classification problems is described as

Algorithm 1.

8

Algorithm 1 GP(M ,D)

Require: M ≥ 0 ∨D 6= null

1: M is the maximum generation

2: D is the data set

Ensure: GP

3: Let gen = 0
4: Initialize the population using the ramped-half-and-half method

5: while gen ≤ M do

6: Evaluate fitness of each individual

7: Update the best individual

8: Survival Selection + Crossover Operation

9: Mutation Operation

10: gen = gen + 1

11: end while

If

If IfAND

> <

A2 50 A3 23 A1 Male

= !=

A4 T4

Decision leaf node Decision leaf node

C1 C2 C3 C5

Figure 4: Genetic decision tree for classification

9

4.1.1. Tree-based individuals for classification

Discriminant functions, classification rules, and decision trees are three common

tree-based classifier structures that can be synthesized with GP. If an n-class classi-

fier is to be found, either n − 1 discriminant functions or classification rules or n − 1
thresholds for a single discriminant function are needed. Because of the lack of logical

conjunctions such as AND, OR, NOT , off-the-shelf decision trees are highly redun-

dant. Figure 4 shows a Genetic Decision Tree (GDT) [35] that combines a decision

trees and classification rules. Besides, a Backus Normal Form (BNF) grammar [36] for

GDTs can be defined, which makes it more convenient to generate GDT individuals

with GP. In a GDT, Ai and Cj are the index of features and index of labels in the input

data set, respectively, where 0 ≤ i ≤ |A|, |A| is number of features and 0 ≤ j ≤ |C|,
|C| is number of labels.

4.2. Multiobjective Genetic Programming

In this section, we will introduce multiobjective genetic programming to maxi-

mize the ROC peformance in classification problems. There exist many efficient evo-

lutionary multiobjective algorithms invented to solve continuous function optimization

problems. It is, however, unclear which one is more suitable for GP for classification

problems. Therefore, we conduct an in-depth study to identify the most appropriate

framework.

4.2.1. Evolutionary Multiobjective Algorithms

We take four EMOAs into consideration: NSGA-II [31], MOEA/D [32], SMS-

EMOA [37], and AGEMOA [34]. The most important factor in EMOAs is the strategy

used to rank the individuals in the population, in other words, the survival mechanism.

The reason of why we choose these EMOAs is that all of them adopt different multiob-

jective frameworks which employ different metrics in trading off conflicting objectives.

Since we do not know which is best for ROCCH maximization, we aim for maximizing

the diversity in our experiments.

A fast and elitist multiobjective genetic algorithm which based on nondominated

sorting,called NSGA-II, is introduced in [31]. The main contribution of NSGA-II is

that it defines a method to rank the individuals by dominance depth and crowding

distance. NSGA-II is used here as representative of algorithms that use dominance

relationships, i.e., that mainly focus on the dominance count and rank. There are other

algorithms such as SPEA [38] and SPEA-II [39] with roughly similar structure.

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) [32] de-

composes a multiobjective optimization problem into a number of scalar optimization

subproblems and optimizes them simultaneously. The basic idea of MOEA/D is that

one solution for a subproblem can use the information provided by its neighbors to im-

prove its performance. Because of that character, MOEA/D has a lower computational

complexity than NSGA-II.

The hypervolume is a quality metric frequently used in evolutionary approaches

to multiobjective optimization problems. SMS-EMOA [37] applies a multiobjective

selection mechanism based on the hypervolume measure combined with the concept of

nondominated sorting. An individual will survive with a higher probability if it makes

10

higher contribution to the hypervolume covered by the current estimate of the Pareto

front.

Bringmann et al. [34] pointed out that the dominance relation and other measures

were used to ensure diversity in objective space but are not guided by a formal notion of

approximation. In that work, they proposed a measure (approximate distance) to define

the additive approximation of one nondominated set to the target set. The selection

mechanism in evolutionary optimization is that an individual will survive with higher

probability when it has higher contribution to reduce the approximate distance.

If

If IfAND

> <

A2 50 A3 23 A1 Male

= =

A4 T4

C1 C2 C3 C5/

If

If IfAND

> OR

A2 50 A1 Male

= =

A4 T4

C1 C2 C3 C5/>

A2 50 >

A2 50

>

A2 50

>

A2 50

>

A2 50

If

If IfAND

> <

A2 50 A3 23 A1 Male

= =

A4 T4

C1 C2 C3 C5/

If

If If

A1 Male

= =

A4 T4

C1 C2 C3 C5/

If

If IfAND

>

A2 50 A1 Male

= =

A4 T4

C1 C2 C3 C5/>

A2 50

If

If If

A1 Male

= =

A4 T4

C1 C2 C3 C5/
AND

> <

A2 50 A3 23

AND

> <

A2 50 A3 23

OR

>

A2 50

>

A2 50

>

A2 50

>

A2 50

protected crossover

If

If IfAND

>

A2 50 A1 Male

= =

A4 T4

C1 C2 C3 C5/>

A2 50

AND

> <

A2 50 A3 23

AND

> <

A2 50 A3 23

If

IfAND

>

A2 50

=

A4 T4

C3/>

A2 50

AND

> <

A2 50 A3 23

AND

> <

A2 50 A3 23

C5

If

A1 Male

= C1 C2

protected mutation

Figure 5: Tree based crossover is shown on the left side, two subtrees are selected and swapped between

different two individuals. The right side shows the mutation operator which swaps two subtrees from the

same individual

4.2.2. Operators used in MOGP

1) Tree based crossover and mutation. First of all, we will outline the search oper-

ators used in GP, i.e., the unary mutation operation and the binary crossover opera-

tor [16, 15, 30]. In the crossover operator, one sub-tree is random selected from each

of the two parent solutions. The selected subtrees are then swapped. The most com-

monly used mutation operation randomly selects a node in a tree and then substitutes

the subtree rooted there with a randomly generated one. Another possible mutation

operation randomly selects two subtrees from a parent and swaps them. Though tree

based mutation operators have been used often in GP works, they may not work very

efficiently in classification problems because randomly re-generated subtree-based mu-

tation ignores the information obtained by its parent which is a trained individual. We

will introduce tailor-made operators for this domain in the following.

2) Decision tree-based local search strategies. In metaheuristic optimization, it is

common to characterize operations as either exploitation (search focused around the

currently best known solutions) and exploration (search that visits points in areas of

the search space that more distant from the currently investigated points) [40]. Explo-

ration and exploitation are both emphasized in evolutionary algorithms. Crossover and

11

mutation are usually used to explore the search space, they guide the search from one

area to another one with a large step. However, to improve the search result, exploita-

tion in a local area around good solution is needed as well.

In GP for classification problems, one classifier divides the instance space into sev-

eral subspaces that may contain positive and negative instances. The classifier is perfect

when all the subspaces contain instances with only one label (positive or negative). We

design two types of local search for GP for classification problems, shifting operators

and splitting operators are described as follows:

2.1) Shifting operator The right-hand side of Fig. 6 shows a GDT and the cor-

responding hyperplane based classification in the left-hand side. The shifting operator

improves the performance of the classifier by shifting the hyperplane, which corre-

sponds to threshold adjusting in GDT. In multiobjective optimization problems, it is

not easy to improve a classifier to a better classifier which dominates the old one. The

dominance relation is a very intensive and rigorous relationship. Therefore, the ques-

tion of how to define whether an application of the shifting operator was successful or

not arises. We choose to use the information gain to measure the improvement. Eq. 5

and Eq. 6 define the weighted sum of the information gain [41]. A successful appli-

cation of the shifting operator to a classifier x increasing its information gain E(x). In

Eq. 5, P (l)[k] and p(l, k) are the number and the probability of instances with label k

in the lth decision node.

S1

S2

S3

If

If IfAND

> <

A2 T2 A3 T3 A1 T1

= =

A4 T4'

info info infoinfo

Decision leaf node Decision leaf node

Shifting Operator

/

Sample Space

Figure 6: Shifting operator is done on a genetic decision tree

p(l, k) =
P (l)[k]
2
∑

i=1

P (l)[i]

(5)

12

E(x) =

∑

∀leaves l∈x

(

1 +
2
∑

k=1

p(l, k) log2 p(l, k)

)(

2
∑

k=1

P (l)[k]− 1

)

|All instances| − |leaves ∈ x|
(6)

2.2) Splitting operator The splitting operator [41] is another type of local search

operator. Different from the shifting operator, it pays more attention to one subspace.

In the left side of Fig. 6, the shifting operator cannot make every space “pure” if there

are only two hyperplanes. The splitting operator can search a new hyperplane to divide

this space into two sub-subspaces, as shown in the left side of Fig. 7. The splitting

operator can work well to make two pure subspaces. In this article, one subspace

which is not pure (e.g., information gain < 0.1) will be considered for the splitting

operator with a probability equal to the number of instances in this subspace divided

by the total number of instances.

S1

S2'

S3

If

If IfAND

> <

A2 T2 A3 T3 A1 T1

= =

A4 T4

info infoinfo

Decision leaf node

Splitting Operator

S2''

If

=

A0 T0

info
Decision leaf node

info

/

Sample Space

Figure 7: Splitting operator is done on a genetic decision tree

As mention in the discussion on the shifting operator, it not necessary to improve

the performance of a classifier to a better one which dominates the old one. The success

of the splitting operator can be defined as follows: Suppose one space S contains p

positive instances and n negative instances. If the splitting operator is applied on this

space, there are two subspaces. The first subspace S1 contains p1 positive instances

and p2 negative instances. The second subspace S2 holds p − p1 positive instances

and n−n1 negative instances. The information gain improvement is InfoGain(S) is

defined as Eq. 8. InfoGain(S) is larger than 0, the operation is a success.

Info(S) = −(
p

n+ p
log2

p

n+ p
+

n

n+ p
log2

n

n+ p
) (7)

InfoGain(S) =
p1 + n1

n+ p
Info(S1) +

n+ p− n1− p1

n+ p
Info(S2) (8)

4.2.3. MOGP for classification problems

In our first set of experiments, four simple MOGP algorithms with tree-based

crossover and mutation (but without local search) are used. We will therefore refer

13

to them as S-NSGP-II, S-MOGP/D, S-SMS-EMOA, and S-AG-EMOA. Additionally,

we extend these four simple MOGP methods with the local search algorithms. These

algorithms are defined in Algorithm 2 to 9 and we name them NSGP-II, MOGP/D,

SMS-MOGP, and AG-MOGP. All algorithms work similar to the frameworks of their

original version, but differ from them in two key points: First, in order to generate the

initial population, we adopt the ramped-half-and-half method [15]. Secondly, simple-

version MOGP methods use tree-based crossover and mutation into their evolutionary

process. MOGP approaches with local search utilize local shifting and splitting opera-

tors to improve the performance of individuals. These differences will be underlined in

the algorithm pseudocodes. The input for these algorithms are classification data sets

and the results are approximations of nondominated set, which in turn, are approxi-

mated ROCCHs.

5. Experimental Studies

In the following, we will describe the data sets and give the configurations for dif-

ferent algorithms. With our experiments, we consider four important questions. First,

we want to verify whether local search operators can work well to improve the per-

formance of different MOGP methods for maximizing the ROCCH. Second, we want

to see whether multiobjective optimization frameworks actually work better than sin-

gleobjective algorithms. Third, we want to know whether MOGP approaches with

local search have advantages on ROCCH maximization compared with traditional ma-

chine learning algorithms such as Naive Bayes (NB), C4.5 and PRIE which is good at

constructing classifiers to maximize ROCCH. The last question is to find which multi-

objective optimization framework is better for classification problems and why.

5.1. Data Sets

27 data sets are selected from the UCI repository [42] and described in Table 1. In

this paper, we focus on binary classification problems, so all the data sets are two-class

problems. Balanced and imbalanced benchmark data sets are carefully selected. The

scale in terms of the number of instances of these data sets ranges from hundreds to

thousands.

Table 1: 27 UCI Data Sets

Data Set
No. of Class

Data Set
No.of Class

Data Set
No.of Class

features Distribution features Distribution features Distribution

australian 14 383:307 house-votes 16 168:267 pima 8 268:500

bands 36 228:312 hypothyroid 25 151:3012 wpbc 33 151:47

bcw 9 458:241 ionosphere 34 225:126 sonar 60 97:111

crx 15 307:383 kr-vs-kp 36 1669:1527 spambase 57 1813:2788

euthyroid 25 293:2870 mammographic 5 445:516 spect 22 212:55

german 24 700:300 monks-1 6 216:216 spectf 44 212:55

haberman 3 225:81 monks-2 6 290:142 tic-tac-toe 9 626:332

hill-valley 100 600:612 monks-3 6 228:204 transfusion 4 178:570

parkinsons 22 147:48 mushroom 22 3916:4208 wdbc 30 212:357

14

Table 2: 15 Algorithms

Algorithm Name Character

S-NSGP-II psf = psp = 0 (without local search)

S-MOGP/D psf = psp = 0 (without local search)

S-SMS-MOGP psf = psp = 0 (without local search)

S-AG-MOGP psf = psp = 0 (without local search)

NSGP-II psf 6= 0, psp 6= 0 (with local search)

MOGP/D psf 6= 0, psp 6= 0 (with local search)

SMS-MOGP psf 6= 0, psp 6= 0 (with local search)

AG-MOGP psf 6= 0, psp 6= 0 (with local search)

FGP Cost sensitive based fitness function

GGP G-mean based fitness function

EGP Entropy based fitness function

MGP EGP + local search opeators

C4.5 As described in [43]

Naive Bayes As described in [44]

Prie [14] The state of the art of machine learning algorithm

to construct classifiers for ROCCH maximization

⋆ psf and psp are the probabilities of shifting operator and splitting operator

5.2. Algorithms involved

Besides the eight MOGP approaches already mentioned, we also apply four sin-

gleobjective genetic programming methods: FGP [35], GGP [41], and EGP [41]

that use the framework of GP for classification in Algorithm 1. The fitness function

is the only difference amongst them. MGP [41] also employs the two local search

operators as described above. Table 2 lists these algorithms and their characteristics.

5.3. Validation and Configuration

5.3.1. Crossvalidation

To verify the generalization performances of different classifiers produced by dif-

ferent algorithms, crossvalidation is employed. We apply each algorithm on each 27

data sets with five-folds crossvalidation for twenty times. The different GP approaches

as well as the MOGP algorithms have different convergence speed. In this work, the

generation limit M for each algorithm Alg on the different data sets Data is defined

as follows. The train part Train of the five-folds crossvalidation on Data is taken and

Alg is applied to Train by five-folds crossvalidation for one time. We then set M to

the generation index at which Alg had the best performance.

5.3.2. Configurations

In Table 3, we provide the parameter configurations for all algorithms in Table 2.

In this work, we take the representation from [35] called GDT as the individual in

15

the above eight new multiobjective genetic programming algorithms. For binary clas-

sification problems, 0 and 1 (standing for negative and positive) are selected as the

terminals of GP. Every classifier (individual) is constructed as if -then-else tree which

involves and, or, not, >, < and = as operator symbols. Most offspring individuals are

obtained by the crossover operator with probability 0.9. The mutation, shifting, and

splitting operators are applied with probability 0.1. Tournament selection is adopted

as the selection strategy and the tournament size is set to 4. To avoid overfitting, the

maximum depth of each individual tree is limited to 17.

Table 3: Parameters for 15 algorithms

Objective Maximize ROCCH

Terminals of GP {0,1} with 1 representing ”Positive”; Function set of GP If-then-else , and,

0 representing ”Negative” or, not, >, < , =.

Data sets 27 UCI data sets Algorithms 15 algorithms in Table 2

Crossover rate 0.9 Mutation rate 0.1

Shifting rate 0.1 Splitting rate 0.1

Parameters for GP P(Population size) = 100; Termination criterion Maximum of G of

G (Maximum Evaluation Times) = M evaluation time has been reached

Number of Runs :

5 fold crossvalidation 20 times

Selection strategy Tournament selection, Size = 4 Max depth of 3/17

initial/inprocess individual program

5.4. Results

Our experiments are composed of three parts. First, to verify the effectiveness of

local search in MOGP methods, we list the results (Area under the ROCCH) of MOGP

approaches without and with local search. In the second part of this discussion, we

show that a multiobjective genetic programming framework with local search can work

better than singleobjective genetic programming without or with local search. Finally,

traditional machine learning algorithms are compared to MOGP with local search to

certify the efficiency of our algorithms in maximizing the ROC performance.

5.4.1. Results of MOGP without and with local search

Table 4 describes the performance of MOGP methods with and without local search

on 27 UCI data sets. In the second column of Table 4, the first sub-column shows the

results of NSGP-II without local search (named S-NSGP-II) and the results of NSGP-II

with local search (named NSGP-II) are shown in the second sub-column. A number

is printed in bold face if the results are statistically significantly better than the other

variant of the same algorithm according to the Wilcoxon sum-rank tests [45] with a

confidence level of 0.95. The results of MOGP/D, SMS-MOGP and AG-MOGP with

and without local search are described in the third, fourth, and fifth column. The last

row of Table 4 gives the number of wins, the number of draws, and the number of

losses for all data sets.

From this table we can see that S-NSGP-II wins never, loses 22 times to NSGP-II,

and does not perform different in five of the 27 UCI data sets. This means that the local

16

search operator works well and improves the performance of S-NSGP-II. Additionally,

MOGP/D wins against S-MOGP/D on all data sets, SMS-MOGP and AG-MOGP lose

only one time against their version without local search operators. Table 4 therefore

testifies the effectiveness of the local search in MOGP approaches for maximizing the

ROC performance.

Table 4: Performance of MOGP methods without and with local search on UCI data sets, mean and standard

deviation, multiplied by 100, are given in this table

S-NSGP-II NSGP-II S-MOGP/D MOGP/D S-SMS-MOGP SMS-MOGP S-AG-MOGP AG-MOGP

australian 90.93 ± 2.52 92.00 ± 2.46 88.09 ± 5.37 91.68 ± 2.44 89.13 ± 4.21 92.02 ± 2.33 90.39 ± 3.03 91.05 ± 9.49

bands 71.71 ± 5.43 77.70 ± 3.49 69.05 ± 4.47 76.47 ± 4.05 68.51 ± 4.28 75.52 ± 3.71 73.12 ± 4.91 77.02 ± 3.70

bcw 98.12 ± 0.80 98.19 ± 0.99 97.71 ± 1.33 98.07 ± 1.13 97.04 ± 1.83 97.95 ± 1.14 97.92 ± 1.21 97.25 ± 9.87

crx 90.18 ± 3.12 91.79 ± 2.47 89.53 ± 4.88 91.58 ± 2.32 89.34 ± 4.56 91.65 ± 2.21 90.71 ± 3.09 90.88 ± 9.47

euthyroid 79.27 ± 9.20 96.78 ± 1.37 72.46 ± 10.39 94.47 ± 6.91 75.05 ± 10.51 96.49 ± 1.32 80.19 ± 8.83 96.34 ± 7.45

german 73.00 ± 3.94 74.03 ± 2.81 68.08 ± 5.35 73.52 ± 2.97 71.75 ± 4.23 73.68 ± 2.56 72.64 ± 3.51 73.11 ± 7.82

haberman 65.55 ± 6.60 67.08 ± 6.19 63.68 ± 7.17 66.60 ± 6.58 65.03 ± 7.48 65.50 ± 7.12 66.88 ± 6.56 66.27 ± 9.44

hill-valley 50.30 ± 1.47 53.19 ± 2.61 50.07 ± 1.47 53.02 ± 2.59 50.58 ± 1.37 52.65 ± 2.61 50.30 ± 1.32 52.42 ± 5.95

house-votes 97.01 ± 3.82 98.10 ± 1.39 96.50 ± 2.87 97.84 ± 1.46 96.95 ± 2.42 98.13 ± 1.23 97.75 ± 1.58 96.94 ± 9.89

hypothyroid 79.63 ± 11.60 97.99 ± 1.52 77.41 ± 14.60 97.11 ± 2.06 81.54 ± 12.99 97.77 ± 1.54 90.06 ± 11.45 98.13 ± 10.28

ionosphere 86.81 ± 6.76 91.83 ± 3.98 84.61 ± 6.73 91.42 ± 3.56 84.89 ± 5.74 90.37 ± 5.02 87.46 ± 4.86 90.67 ± 9.97

kr-vs-kp 88.67 ± 7.32 98.01 ± 0.85 80.41 ± 8.04 98.12 ± 0.99 83.80 ± 6.48 98.26 ± 0.93 87.20 ± 7.35 97.16 ± 9.84

mammographic 89.08 ± 2.05 89.79 ± 1.80 87.71 ± 2.52 89.45 ± 2.00 88.17 ± 2.18 89.23 ± 1.84 89.14 ± 1.95 88.55 ± 9.11

monks-1 94.80 ± 3.43 99.93 ± 0.53 88.75 ± 11.39 99.45 ± 1.97 83.75 ± 12.99 97.95 ± 3.88 94.20 ± 5.97 97.48 ± 10.18

monks-2 77.65 ± 9.50 93.60 ± 5.25 68.18 ± 10.74 89.82 ± 16.76 69.57 ± 10.18 85.44 ± 6.85 76.01 ± 9.69 82.80 ± 10.11

monks-3 98.22 ± 4.26 100.00 ± 0.00 94.51 ± 9.50 99.84 ± 0.45 92.52 ± 9.99 98.60 ± 5.08 99.52 ± 0.49 98.76 ± 9.99

mushroom 98.70 ± 1.61 99.95 ± 0.10 96.93 ± 3.15 99.77 ± 0.30 97.09 ± 2.71 99.79 ± 0.36 98.59 ± 2.45 99.35 ± 3.07

parkinsons 85.09 ± 6.58 86.17 ± 5.96 80.87 ± 8.00 86.96 ± 5.02 81.76 ± 2.32 85.82 ± 5.81 83.08 ± 6.22 84.78 ± 10.20

pima 77.22 ± 3.52 80.61 ± 3.21 72.54 ± 5.07 80.35 ± 2.86 75.20 ± 4.12 80.11 ± 3.07 77.97 ± 3.62 79.16 ± 8.54

sonar 70.42 ± 6.01 80.09 ± 5.55 67.51 ± 7.43 79.68 ± 6.05 69.34 ± 7.97 79.38 ± 5.93 71.74 ± 6.48 78.04 ± 9.39

spambase 70.97 ± 8.55 96.36 ± 0.57 64.17 ± 7.67 95.80 ± 0.60 64.85 ± 8.94 96.04 ± 0.63 93.38 ± 0.92 95.02 ± 9.61

spect 75.47 ± 5.05 76.52 ± 6.91 73.90 ± 8.34 76.97 ± 7.85 73.19 ± 7.39 76.00 ± 7.11 75.21± 7.27 75.20 ± 10.19

spectf 68.30 ± 5.95 73.38 ± 5.55 66.43 ± 8.58 73.58 ± 5.65 68.38 ± 7.47 75.29 ± 6.31 71.52 ± 6.52 74.90 ± 9.69

tic-tac-toe 73.39 ± 8.99 86.19 ± 11.46 67.52 ± 11.04 84.18 ± 9.06 69.12 ± 11.85 77.06 ± 4.28 71.31 ± 10.70 75.90 ± 12.95

transfusion 68.97 ± 4.89 72.12 ± 4.44 64.94 ± 4.75 71.88 ± 4.63 67.04 ± 5.45 71.94 ± 2.58 68.40 ± 5.17 70.98 ± 8.43

wdbc 93.52 ± 4.95 97.28 ± 1.49 92.42 ± 4.73 97.02 ± 1.63 92.91 ± 3.95 97.08 ± 1.83 94.14 ± 3.08 96.23 ± 9.86

wpbc 59.52 ± 8.15 67.41 ± 8.33 59.42 ± 7.76 66.61 ± 7.41 61.00 ± 8.36 66.92 ± 8.88 60.94 ± 8.36 66.04 ± 9.85

Win-Draw-Loss 0-5-22 22-5-0 0-0-27 27-0-0 0-1-26 26-1-0 0-6-21 21-6-0

5.4.2. Results of singleobjective GP and traditional machine learning algorithms

In this subsection, we present all results of the four singleobjective genetic pro-

gramming algorithms [41] on 27 data sets. In Table 5, the first column gives the names

of the data sets involved and the second to the fifth column the results (mean and stan-

dard deviation are multiplied by 100). The last four rows list the outcomes of Wilcoxon

rank-sum tests of all seven tested approaches versus the four MOGP methods with lo-

cal search. In Table 6, we list the outcomes of the Wilcoxon rank-sum test applied

to the results of single- and multiobjective genetic programming algorithms. As FGP

and GGP have the same representation (GDT) with the MOGP methods without local

search, the main different factor is the multiobjective strategy. At the same time, the

main difference between the MGP and MOGP methods with local search is the mul-

tiobjective strategy. From this Table, it becomes obvious that multiobjective strategies

in genetic programming are able to improve the ROC performance in classification

problems.

17

As described in Table 5, the second to fifth column report the results of the four

singleobjective genetic programming algorithms on 27 data sets. From the sixth to the

last column, we list three traditional machine learning algorithms NB, C4.5, and PRIE

which is the state of art in ROCCH maximization. In the last four rows, the Wilcoxon

rank-sum test is used to compare their results with those of the MOGP methods with

local search. Taking 21− 6− 0 as example, AG-MOGP wins 21 times, losses 0 time,

and 6 times scores equal against EGP. Obviously, AG-MOGP is far better than EGP in

ROCCH maximization on the data sets we used. From the last four Wilcoxon rank-sum

test results, it is clear that multiobjective GP strategies with local search outperform

significantly the four singleobjective genetic programming algorithms and the three

standard machine learning algorithms.

Table 5: Performance of singleobjective genetic programming and traditional machine learning algorithms

on UCI data sets.

EGP FGP GGP MGP NB Prie C4.5

australian 90.05 ± 3.06 85.56 ± 4.87 85.54 ± 3.83 90.66 ± 2.68 89.47 ± 2.78 91.75 ± 2.36 85.52 ± 4.05

bands 70.04 ± 5.05 53.99 ± 5.56 64.88 ± 4.89 76.18 ± 4.97 73.91 ± 4.68 76.07 ± 4.81 74.65 ± 0.00

bcw 97.35 ± 1.37 93.73 ± 2.11 93.85 ± 2.45 97.23 ± 1.52 98.92 ± 0.62 98.16 ± 1.09 95.05 ± 2.55

crx 90.68 ± 2.49 85.91 ± 3.57 86.36 ± 3.32 90.75 ± 2.53 87.88 ± 3.16 90.65 ± 2.77 85.51 ± 0.00

euthyroid 93.37 ± 5.81 50.01 ± 0.11 79.41 ± 13.12 97.47 ± 1.41 91.91 ± 2.03 96.24 ± 1.31 92.97 ± 2.49

german 70.81 ± 3.42 51.75 ± 3.51 67.14 ± 5.36 71.69 ± 3.30 78.42 ± 2.94 75.95 ± 3.25 65.36 ± 0.00

haberman 62.97 ± 7.63 50.66 ± 4.25 63.98 ± 6.68 64.14 ± 7.69 65.00 ± 7.19 69.58 ± 7.26 63.96 ± 0.00

hill-valley 50.18 ± 2.15 50.09 ± 1.39 49.90 ± 3.25 53.34 ± 3.00 50.64 ± 3.65 51.82 ± 3.93 50.00 ± 0.00

house-votes 97.75 ± 1.63 94.63 ± 4.00 95.23 ± 3.85 97.74 ± 1.62 98.05 ± 1.04 97.80 ± 1.49 96.35 ± 2.04

hypothyroid 96.55 ± 2.55 52.35 ± 3.27 93.45 ± 5.91 98.19 ± 1.77 98.02 ± 1.52 96.51 ± 2.45 95.56 ± 3.23

ionosphere 87.22 ± 5.84 80.87 ± 7.60 79.86 ± 7.01 90.09 ± 4.76 93.57 ± 3.18 93.68 ± 4.23 88.20 ± 5.65

kr-vs-kp 85.71 ± 6.65 62.16 ± 8.52 71.89 ± 6.02 98.44 ± 1.06 93.21 ± 1.00 98.26 ± 0.44 99.71 ± 0.23

mammographic 88.96 ± 1.97 82.76 ± 3.60 84.73 ± 3.46 88.68 ± 2.24 89.77 ± 1.96 89.70 ± 2.02 87.66 ± 0.00

monks-1 85.96 ± 11.96 51.21 ± 9.96 75.03 ± 5.25 99.64 ± 1.66 73.18 ± 4.58 70.93 ± 5.59 75.22 ± 0.00

monks-2 80.48 ± 12.05 50.01 ± 6.29 53.28 ± 6.92 94.76 ± 4.88 52.38 ± 7.04 51.25 ± 6.16 94.17 ± 5.93

monks-3 99.59 ± 0.49 87.48 ± 10.72 86.75 ± 9.04 99.90 ± 0.29 95.94 ± 2.17 99.60 ± 0.27 100.00 ± 0.00

mushroom 98.68 ± 1.88 84.67 ± 8.24 89.44 ± 4.47 99.95 ± 0.13 92.60 ± 0.71 99.49 ± 0.14 100.00 ± 0.00

parkinsons 81.92 ± 7.80 76.62 ± 8.22 75.97 ± 7.19 85.87 ± 7.20 85.91 ± 6.11 88.24 ± 5.83 78.91 ± 9.76

pima 76.27 ± 4.94 50.88 ± 1.29 70.73 ± 3.44 78.77 ± 3.71 81.40 ± 3.01 79.58 ± 2.92 75.23 ± 4.93

sonar 73.33 ± 7.01 54.17 ± 6.81 68.22 ± 7.38 77.59 ± 7.57 80.12 ± 7.03 69.92 ± 8.64 73.85 ± 7.84

spambase 85.28 ± 5.53 76.14 ± 7.16 76.58 ± 4.30 94.79 ± 1.04 93.98 ± 0.69 96.72 ± 0.56 93.72 ± 0.00

spect 74.36 ± 7.01 68.21 ± 10.68 71.99 ± 7.18 75.33 ± 8.59 84.09 ± 6.03 83.51 ± 7.01 76.88 ± 8.91

spectf 71.76 ± 7.04 58.69 ± 9.06 69.16 ± 7.16 73.10 ± 8.45 84.94 ± 5.19 78.90 ± 6.37 63.36 ± 9.07

tic-tac-toe 71.89 ± 12.11 63.35 ± 9.73 63.35 ± 10.15 90.04 ± 10.24 61.52 ± 14.76 70.41 ± 12.51 84.91 ± 13.91

transfusion 71.31 ± 5.21 50.48 ± 0.89 67.46 ± 4.37 71.31 ± 4.88 70.93 ± 4.94 70.87 ± 5.39 71.08 ± 5.08

wdbc 95.12 ± 2.92 87.25 ± 4.54 90.39 ± 2.83 96.05 ± 1.92 98.14 ± 1.33 96.58 ± 1.94 92.74 ± 3.16

wpbc 66.83 ± 9.90 56.47 ± 7.41 60.15 ± 8.92 64.21 ± 10.66 66.42 ± 8.85 68.22 ± 9.25 58.19 ± 10.77

NSGP-II 23-4-0 27-0-0 27-0-0 15-9-3 13-8-6 13-7-7 20-5-2

MOGP/D 22-5-0 27-0-0 27-0-0 10-11-6 12-8-7 9-11-7 20-2-5

SMS-MOGP 21-6-0 27-0-0 27-0-0 9-10-8 12-8-7 9-11-7 20-2-5

AG-MOGP 21-6-0 27-0-0 26-1-0 9-10-8 14-6-7 11-9-7 20-2-5

5.4.3. Analysis on MOGP for maximizing the ROC performance

Table 7 shows the Wilcoxon rank-sum test results among the MOGP methods with

and without local search. Here, we use Fig. 8 to illustrate the relationship of these

four MOGP approaches with local search. The algorithm at the head of arrow are

better than the one at the end of arrow, and the results show that NSGP-II is the best

algorithm among the tested ones. At the same time, MOGP/D is slightly better than

SMS-MOGP and AG-MOGP which have a roughly similar performance on all 27 data

sets. Fig. 9 describes the relationship of these MOGP approaches without local search.

18

Table 6: Wilcoxon rank-sum test results for MOGP methods without local search and singleobjective ge-

netic programming. FGP, EGP and four MOGP methods without local search have the same representation.

MGP and four local search-based MOGP approaches take shifting and splitting operators into their search

strategies.

FGP GGP MGP

S-NSGP-II 26-0-1 20-5-1 NSGP-II 15-9-3

S-MOGP/D 25-1-1 16-6-5 MOGP/D 10-11-6

S-SMS-MOGP 26-0-1 18-6-3 SMS-MOGP 9-10-8

S-AG-MOGP 26-1-0 22-5-0 AG-MOGP 9-10-8

Here, S-AG-MOGP is the best algorithms among four methods and it is slightly better

than S-NSGP-II which is quite a lot better than S-SMS-MOGP. S-MOGP/D is the worst

algorithm. First of all, it should be emphasized that NSGP-II is the best algorithm of

all approaches, with and without local search.

There are two factors affecting the performance of the tested algorithms, one is

the different ranking mechanisms used in multiobjective optimization algorithms, the

other is that the local search operators have different efficacy when they are introduced

into different EMOAs. Comparing Fig. 9 with Fig. 8, we can find that NSGP-II and

MOGP/D are improved to the first and the second place. This means local search oper-

ators work well in multiobjective optimization frameworks of NSGA-II and MOEA/D,

and not as good in SMS-EMOA and AG-EMOA.

Table 7: Wilcoxon rank-sum test results for MOGP methods with and without local search

NSGP-II MOGP/D SMS-MOGP AG-MOGP

NSGP-II — 9-18-0 9-16-2 6-20-1

MOGP/D 0-18-9 — 3-20-4 4-20-3

SMS-MOGP 2-16-9 3-20-4 — 2-23-2

AG-MOGP 1-20-6 3-20-4 2-23-2 —

S-AGE-MOGP S-MOGP/D S-SMS-MOGP S-NSGP-II

S-AG-MOGP — 22-5-0 19-8-0 5-20-2

S-MOGP/D 0-5-22 — 3-18-6 0-8-19

S-SMS-MOGP 0-8-19 6-18-3 — 0-9-18

S-NSGP-II 2-20-5 19-8-0 18-9-0 —

NSGP-II MOGP/D

AG-MOGP

SMS-MOGP

quite better

sli
ghtly

 bett
er

sli
ghtly

 bett
er

Figure 8: Comparisons among MOGP methods with local search

19

S-NSGP-II S-MOGP/DS-AG-MOGP S-SMS-MOGP
slightly better slightly betterquite better

Figure 9: Comparisons among MOGP methods without local search

More evidence can be found in Table 10, which shows the total time cost in seconds

of all MOGP methods and the difference of the approaches with and without local

search. Local search operators seem to consume more time in MOGP/D framework

and the second longest time in NSGP-II framework. There are no huge differences of

time cost in the SMS-MOGP and AG-MOGP frameworks. The reason for this is that

the SMS-MOGP and AG-MOGP frameworks are very greedy strategies. As outline in

Section 4.2.1, the contribution of each individual to their target metrics (hypervolume

or approximate distance) is directly used into select mechanism. Additionally, the

hypervolume is similar to the area under the ROCCH and minimizing the approximated

distance is also very similar to maximizing the hypervolume. As SMS-MOGP and AG-

MOGP are greedy at searching the maximum ROCCH, it becomes harder to escape

a local optimum since the shifting and splitting operators only perform exploitation.

Hence, these two operators cannot contribute much to SMS-MOGP and AG-MOGP.

NSGP-II, on the other hand, ranks the individuals by dominance level and crowding-

distance and MOGP/D just compares individuals with others in their neighborhood.

Both algorithms are not very greedy at selecting individuals to survive and the sur-

vivors can potentially be improved by the local search operators. From another per-

spective, SMS-MOGP and AG-MOGP have larger selection pressure than NSGP-II

and MOGP/D in searching genetic decision trees to maximize the ROC performance.

The reason for why NSGP-II is better than MOGP/D is the discordancy of the

genotype and phenotype of genetic programming: Two genetic programming individu-

als can be very similar in decision space, but may have a very long distance in objective

space. In MOGP/D, an offspring is produced by two parents in a neighborhood which

is defined in the objective space, but it will not be in this neighborhood. This causes

the framework of MOEA/D to not work well because it supposes that subproblems can

be optimized by individuals in their neighborhood.

5.4.4. Time cost of all algorithms

Table 8 and Table 9 report the time cost of all algorithms. The experiment en-

vironment is an 8 core CPU with 2.13GHz and 24GB RAM. Obviously, GP-based

algorithms need much more time than traditional machine learning algorithms. Be-

cause of the metaheuristic character of EAs, GP needs to evaluate many classifiers

until it converges. The Naive Bayes method, on the other hand, calculates an a posteri-

ori probability and the C4.5 adopts uses a greedy method to increase information gain.

PRIE employs a greedy strategy to construct classifiers (more than one, usually dozens

of classifiers) to maximize the ROCCH, so it cost a little more time than NB and C4.5,

but still much less than GP- based algorithms.

Among the singleobjective GP algorithms, MGP costs much more time than the

others (EGP, FGP, GGP). The reason is that local search operators exploit each indi-

vidual. For the same reason, MOGP methods with local search will consume more

time than their counterparts without local search.

20

Table 8: Time cost of MOGP algorithms in seconds

Time(second) S-NSGP-II S-MOGP/D S-SMS-MOGP S-AG-MOGP NSGP-II MOGP/D SMS-MOGP AG-MOGP

australian 30.34 5.31 42.71 28.12 51.65 31.18 22.88 48.74

bands 81.84 122.68 24.55 109.3 70.65 117.45 24.25 122.61

bcw 4.96 5.51 9.82 11.69 3.06 7.24 5.03 15.66

crx 83.69 131.33 197.94 300.69 82.38 87.43 82.81 155.47

euthyroid 154.83 22.46 238.75 313.61 806.02 529.17 159.92 214

german 64.98 46 62.84 58.48 258.99 274.96 76.43 67.62

haberman 5.22 5.25 26.20 9.98 3.82 3.88 5.04 4.13

hill-valley 274.38 170.05 339.33 378.59 971.96 1204.87 606.45 543.85

house-votes 6.86 1.79 91.90 189.56 3.85 18.23 4.29 35.59

hypothyroid 607.35 1376.31 799.97 65.32 52.5 484.17 487.80 1569.87

ionosphere 12.07 3.98 16.32 20.74 28.5 19.28 8.96 82.59

kr-vs-kp 293.09 127.52 301.78 312.55 159.18 882.05 304.78 334.64

mammographic 15.22 11.92 24.44 33.58 34.95 98.57 17.74 104.11

monks-1 29.23 27.64 37.54 45.6 21.86 19.64 15.80 28.09

monks-2 134.2 121.59 138.32 142.11 318.01 489.36 162.39 208.77

monks-3 1.1 3.81 159.33 421.66 27.57 43.82 3.98 7.98

mushroom 857.63 698.38 682.44 491.46 607.59 718.55 662.13 805.04

parkinsons 1.55 1.09 1.96 2.44 2.2 2.22 2.71 1.44

pima 25.75 4.77 22.46 18.16 51.64 74.73 25.50 54.3

sonar 2.76 2.34 5.94 9.06 7.92 24.69 6.61 6.36

spambase 134.62 103.62 1189.80 2856.4 2910.43 3509.06 1711.28 1520.9

spect 7.71 2.53 13.40 14.79 32.66 21.06 6.29 6.99

spectf 1.1 1.08 3.33 5.81 2.12 1.97 6.79 10.33

tic-tac-toe 84.52 81.51 96.32 98.32 699.82 399.07 156.73 109.5

transfusion 4.71 4.36 4.52 4.69 36.69 41.49 7.05 4.67

wdbc 4.79 1.89 4.88 6.45 7.14 5.78 7.04 9.81

wpbc 0.7 3.84 1.20 1.68 2.5 4.33 1.54 1.88

Sum Time 2925.20 3088.56 4538.00 5950.84 7255.66 9114.25 4582.20 6074.94

Table 9: Time cost of singleobjective Genetic Programming and Machine Learning Algorithms

Time(second) EGP FGP GGP MGP NB Prie C4.5 Time(second) EGP FGP GGP MGP NB Prie C4.5

australian 5.50 2.75 2.88 2.90 0.05 4.18 0.03 bands 5.50 2.50 2.70 121.26 0.09 15.85 0.08

bcw 10.93 13.55 13.14 6.77 0.03 0.53 0.01 crx 11.95 4.21 3.18 6.10 0.05 2.92 0.03

euthyroid 212.36 8.35 14.05 198.61 0.48 2.74 0.34 german 24.13 4.25 5.67 16.95 0.12 4.79 0.13

haberman 10.70 3.20 2.78 1.54 0.01 0.43 0.00 hill-valley 29.59 9.41 7.11 1507.34 0.42 380.82 0.08

house-votes 2.83 3.04 5.51 1.37 0.04 0.48 0.01 hypothyroid 79.04 47.37 48.36 45.38 0.50 3.20 0.20

ionosphere 20.76 142.17 13.91 15.67 0.05 5.77 0.04 kr-vs-kp 419.03 30.57 23.84 554.33 0.65 1.58 0.31

mammographic 20.74 7.64 5.00 46.07 0.03 0.87 0.02 monks-1 5.93 1.51 2.16 16.27 0.02 0.29 0.00

monks-2 200.47 20.76 14.98 59.35 0.01 0.30 0.01 monks-3 8.49 7.10 6.11 5.40 0.01 0.31 0.01

mushroom 1107.35 664.66 531.60 903.85 1.01 2.31 0.57 parkinsons 4.52 1.52 1.77 5.42 0.02 1.62 0.01

pima 30.50 20.73 12.10 20.81 0.03 16.46 0.02 sonar 5.90 5.77 5.56 10.12 0.05 31.45 0.03

spambase 90.32 65.99 16.67 2313.91 1.14 374.98 1.80 spect 4.92 2.91 1.04 9.35 0.03 0.39 0.02

spectf 9.71 8.76 2.88 8.62 0.05 3.81 0.03 tic-tac-toe 218.47 164.91 9.86 102.80 0.04 0.48 0.03

transfusion 33.79 93.27 3.48 6.71 0.02 4.34 0.01 wdbc 15.23 9.57 5.47 8.74 0.08 20.86 0.04

wpbc 7.77 1.96 1.36 3.04 0.02 7.89 0.04

Table 10: Total time cost of local search operator in different MOGP methods

Time cost Time cost Difference

S-AG-MOGP 5950.84 AG-MOGP 6074.94 124.10

S-MOGP/D 3088.56 MOGP/D 9114.25 6025.69

S-SMS-MOGP 4538.00 SMS-MOGP/D 4582.20 44.20

S-NSGP-II 2925.20 NSGP-II 7255.66 4330.46

21

6. Conclusion and future work

In this work, we first pointed out that ROCCH is very suitable to measure the ROC

performance in binary classification, especially for especially if the class distribution

is unknown or the misclassification cost are skew. Then, we discussed the relation-

ship between ROCCH and the Pareto front in multiobjective optimization: both can be

considered as analogous to each other.

Maximizing the ROCCH can be archived by using evolutionary multiobjective al-

gorithms to search a group of nondominated solutions. Four different MO frameworks

for synthesizing genetic decision trees are proposed: S-NSGP-II, S-MOGP/D, S-SMS-

MOGP, and S-AG-MOGP, each employing a different fitness measure. We then pro-

posed to use local search in genetic programming for classification problems. Two

different local search operators called shifting and splitting are defined. They are intro-

duced into the MOGP methods to improve the performance in searching Pareto front.

We found that these operators contribute differently in the different MOGP meth-

ods. NSGP-II with local search outperforms the other the MOGP algorithms both with

and without local search. We furthermore compare the new approaches to singleob-

jective genetic programming algorithms and traditionally machine learning algorithms

and found that they perform very favorable. In conclusion, NSGP-II with local search

is the best overall algorithms for ROCCH maximization.

As pointed out in Section 3.2, ROCCH is not the same as the Pareto front in multi-

objective optimization. In this work, MOGP approaches are adopted to search a group

of nondominated genetic decision trees to approximate the ROCCH and to maximize

the area under the curve constructed by these nondominated solutions. Our plan for

future work is to combine the concepts of ROCCH and Pareto front in a better way in

order to derive new multiobjective evolutionary algorithms for maximizing the ROC

performance.

In 5.4.1, we found that the contribution of the local search methods to improve

the final results strongly depends on the MO framework. Therefore, further research

should pay attention on how local search operators work in multiobjective scenarios.

Generally, the concepts of memetic computing should be investigated more thoroughly

in this domain, as they seemingly can lead to significant improvements in ROCCH

maximization problems.

The last issue we want to tackle is the dissatisfying runtime of our methods. This

is a disadvantage for EAs in general, but may be mitigated by using parallelization and

new hardware such as GPUs.

Acknowledgment

This work was partially supported by the 973 Program of China (Grant No. 2011CB707006),

National Natural Science Foundation of China (Grant No. U0835002, No. 61028009

and No. 61175065), the National Natural Science Foundation of Anhui Province (No.

1108085J16), and the European Union Seventh Framework Programme under grant

agreements No. 247619.

22

Appendix A. MOGP Algorithms

Algorithm 2 fast-nondominated-sort(P) [31]

Require: P 6= null

1: P is a solution set
Ensure: fast-nondominated-sort

2: for each p ∈ P do

3: Sp = ∅
4: np = 0
5: for each q ∈ P do

6: if p ≺ q then

7: Sp = Sp ∪ {q}
8: else {q ≺ p}
9: np = np + 1

10: end if

11: end for

12: if np = 0 then

13: Prank = 1
14: F1 = F1 ∪ {p}
15: end if

16: end for

17: while Fi 6= ∅ do

18: Q = ∅
19: for each p ∈ Fi do

20: for each q ∈ Sp do

21: nq = nq − 1
22: if nq = 0 then

23: qrank = i+ 1
24: Q = Q ∪ {q}
25: end if

26: end for

27: end for

28: i = i+ 1
29: Fi = Q
30: end while

References

[1] T. Fawcett, An introduction to roc analysis, Pattern recognition letters 27 (8)

(2006) 861–874.

[2] P. Wang, K. Tang, T. Weise, E. P. K. Tsang, X. Yao, Multiobjective Genetic Pro-

gramming for Maximizing ROC Performance, Neurocomputing 125 (2014) 102–

118. doi:10.1016/j.neucom.2012.06.054.

URL http://arxiv.org/abs/1303.3145

23

http://arxiv.org/abs/1303.3145
http://arxiv.org/abs/1303.3145
http://dx.doi.org/10.1016/j.neucom.2012.06.054
http://arxiv.org/abs/1303.3145

Algorithm 3 crowding-distance-assignment(T) [31]

Require: T 6= null

1: T is a nondominated solution set
Ensure: crowding-distance-assignment

2: l = |T |
3: for each i ∈ [1, l] do

4: T [i]distance = 0
5: end for

6: for each objective m do

7: T = sort(T,m)
8: T [1]distance = T [l]distance =∞
9: for i = 2 to l − 1 do

10: T [i]distance = T [i]distance + (T [i+ 1].m− T [i− 1].m)/(fmax
m − fmin

m)
11: end for

12: end for

Algorithm 4 NSGP-II(P ,Max,N)

Require: Max ≥ 0 ∨ P = null ∨N > 0
1: Max is the maximum evaluations

2: P is the population

3: N is the population size

Ensure: NSGA-II

4: Let m = 0, t = 0
5: Initialize the population Pt by ramped-half-and-half method

6: Evaluate each individual in Pt and m = m+N

7: while m ≤ Max do

8: Generate offspring Qt from Pt by tree-based crossover

9: Shifting operator with probability psf
10: Splitting operator with probability psp
11: Evaluate each changed offspring in Qt

12: m = m + |changed-offspring|
13: Rt = Pt ∪Qt

14: F = fast-nondominated-sort(Rt)
15: Pt+1 = ∅ and i = 0
16: while |Pt+1|+ |Fi| ≤ N do

17: crowding-distance-assignment(Fi)

18: Pt+1 = Pt+1 ∪ Fi

19: i = i+ 1
20: end while

21: Sort(Fi,≺n)

22: Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
23: P = Pt+1

24: t = t+ 1
25: end while

26: Return P

24

Algorithm 5 MOGP/D(EP ,P ,N ,M ,T)

Require: EP = null ∨N > 0 ∨M ≥ 2 ∨ T > 0
1: EP (External Population) is an archive to collect pareto-optimal solutions

2: P is the population contains N solutions (x1, ..., xN) where xi is the current solu-

tion for the ith subproblem

3: N is the population size and is also the number of subproblems in MOEA/D

4: M is the number of objectives

5: A uniform spread of N weight vectors: λ1, ..., λN , λi = (λi
1, ..., λ

i
M)for1 ≤ i ≤

N

6: T is the number of weight vectors in the neighborhood of each weight vector

7: Reference point z∗

8: FV (k) is the F-value of xi 1 ≤ i ≤ N

Ensure: MOGP/D

9: Step 1) Initialization

10: Step 1.1) Set EP = ∅
11: Step 1.2) Compute the Euclidean distances between any two weight vectors

and then work out the T closest weight vectors to each weight vector. For each

i = 1, ..., N ,Set B(i) = i1, ..., iT , where λi1 , ..., λiT are the T closest weight

vectors to λi

12: Step 1.3) Generate an initial population (x1, ...xN)by ramped-half-and-half method

13: Step 2) Update

14: for i = 1,...,N do

15: Step 2.1)Reproduction:Randomly select two indexes k, l for B(i), and then

generate a new solution y by xk and xl by using tree-based crossover operators

16: Step 2.2)Improvement:Apply shifting operator probability psf and splitting operator

with probability psp on y to produce y
′

17: Step 2.3)Update of neighboring solutions: For each index j ∈ B(i), if

gte(y
′

|λj , z∗) ≤ gte(xj |λj , z∗), then set xj = y
′

and FV j = F (y
′

)
18: Step 2.4)Update of EP

19: Remove from EP all the vectors dominated by F (yi)
20: Add FV

′

to EP if no vectors in EP dominate F (yi)
21: end for

22: Step 3) Stopping Criteria: If stopping criteria is satisfied then stop and output

EP . Otherwise, go to Step 2

25

Algorithm 6 Reduce (Q)[37]

Require: Q 6= ∅
1: Q is a solution set

Ensure: Reduce

2: ℜ1, ...,ℜv ←fast-nondominated-sort(Q)
3: if v > 1 then

4: r ← argmaxs∈ℜv [d(s,Q)]
5: else

6: r ← argmins∈ℜv [∆ς(s,ℜv)]
7: end if

8: Return (Q\{r})

Algorithm 7 SMS-MOGP (Max,N)

Require: Max > 0, N > 0
1: Max is the maximum of evaluations

2: N is the population size
Ensure: SMS-MOGP

3: P0 = init() by ramped-half-and-half method

4: t = 0
5: m = 0
6: while m < Max do

7: qt+1 ← Shifting operator with probability psf
splitting operator with probability psp are done on Pt

8: Pt+1 ← Reduce(Pt ∪ qt+1)
9: t← t+ 1

10: m← m+ 1
11: end while

Algorithm 8 MeasureQuality(A,P)[34]

Require: A 6= ∅ ∨ P 6= ∅
1: A Archive

2: P Population
Ensure: MeasureQuality

3: S ← ∅
4: for each a ∈ A do

5: δ ←∞
6: for each p ∈ P do

7: ρ← −∞
8: for i← d do

9: ρ← max{ρ, ai − pi}
10: end for

11: δ ← min{δ, ρ}
12: end for

13: S ← S ∪ δ
14: end for

15: sort S decreasingly

16: Return S

26

Algorithm 9 AG-MOGP(Max,A,P ,µ,λ)

Require: A = ∅ ∨ P = ∅ ∨Max > 0 ∨ µ > 0 ∨ λ > 0
1: A Archive

2: P Population

3: Max is the maximum of evaluations

4: µ and λ are the size of parent and offspring population
Ensure: AGEMOA

5: Initialize population P with µ by ramped-half-and-half method

6: Set archive A← P ,m← 0
7: while m < Max do

8: Initialize offspring population O ← ∅
9: for j ← 1 to λ do

10: Select two random individuals from P
11: Apply crossover operator

12: Shifting operator with probability psf
13: Splitting operator with probability psp
14: Add new individual into O
15: end for

16: for each p ∈ O do

17: Insert offspring p in archive A
18: end for

19: Add offsprings to population, i.e., P ← P ∪O
20: while |P | > µ do

21: for each p ∈ P do

22: ??MeausreQuality(A,P\{p})
23: end for

24: Remove p from P for which Sα(A,P\{p}) is lexicographically smallest

25: end while

26: end while

27

[3] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag

GmbH: Berlin, Germany, 2006.

[4] F. Provost, T. Fawcett, Analysis and visualization of classifier performance: Com-

parison under imprecise class and cost distributions, in: Proceedings of the third

international conference on knowledge discovery and data mining, Amer Assn

for Artificial, 1997, pp. 43–48.

[5] J. Egan, Signal detection theory and ROC analysis, Series in Cognition and Per-

ception, Academic Press, 1975.

[6] H. Sox, M. Higgins, Medical decision making, Amer College of Physicians, 1988.

[7] A. Bradley, The use of the area under the roc curve in the evaluation of machine

learning algorithms, Pattern Recognition 30 (7) (1997) 1145–1159.

[8] F. Provost, T. Fawcett, Robust classification for imprecise environments, Machine

Learning 42 (3) (2001) 203–231.

[9] T. Fawcett, Using rule sets to maximize roc performance, in: Data Mining, 2001.

ICDM 2001, Proceedings IEEE International Conference on, IEEE, 2001, pp.

131–138.

[10] P. Flach, S. Wu, Repairing concavities in roc curves, in: Proceedings of the 19th

International Joint Conference on Artificial Intelligence (IJCAI’05), 2005, pp.

702–707.

[11] R. Prati, P. Flach, Roccer: an algorithm for rule learning based on roc analysis, in:

Proceedings of the 19th international joint conference on Artificial intelligence,

Morgan Kaufmann Publishers Inc., 2005, pp. 823–828.

[12] M. Barreno, A. A. Cárdenas, J. D. Tygar, Optimal roc curve for a combination of

classifiers, Advances in Neural Information Processing Systems 20 20 (X) (2008)

57–64.

[13] L. Cam, Neyman–pearson lemma, Encyclopedia of Biostatistics.

[14] T. Fawcett, Prie: a system for generating rulelists to maximize roc performance,

Data Mining and Knowledge Discovery 17 (2) (2008) 207–224.

[15] J. Koza, Genetic programming: on the programming of computers by means of

natural selection, The MIT press, 1992.

[16] R. Poli, W. Langdon, N. McPhee, A field guide to genetic programming, Lulu

Enterprises Uk Ltd, 2008.

[17] P. Espejo, S. Ventura, F. Herrera, A survey on the application of genetic program-

ming to classification, Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on 40 (2) (2010) 121–144.

28

[18] P. Wáng, T. Weise, R. Chiong, Novel Evolutionary Algorithms for Supervised

Classification Problems: An Experimental Study, Evolutionary Intelligence 4 (1)

(2011) 3–16. doi:10.1007/s12065-010-0047-7.

[19] W. Tackett, Genetic programming for feature discovery and image discrimina-

tion, in: Proceedings of the 5th International Conference on Genetic Algorithms,

ICGA-93, Citeseer, 1993, pp. 303–309.

[20] J. Li, X. Li, X. Yao, Cost-sensitive classification with genetic programming,

in: Evolutionary Computation (CEC), 2005 IEEE Congress on, IEEE, 2005, pp.

2114–2121.

[21] Y. Zhang, H. Li, M. Niranjan, P. Rockett, Applying cost-sensitive multiobjec-

tive genetic programming to feature extraction for spam e-mail filtering, Genetic

Programming (2008) 325–336.

[22] E. Alfaro-Cid, K. Sharman, A. Esparcia-Alcázar, A genetic programming ap-

proach for bankruptcy prediction using a highly unbalanced database, Applica-

tions of Evolutionary Computing (2007) 169–178.

[23] G. Patterson, M. Zhang, Fitness functions in genetic programming for classifica-

tion with unbalanced data, AI 2007: Advances in Artificial Intelligence (2007)

769–775.

[24] U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles using

genetic programming for classification with unbalanced data, Evolutionary Com-

putation, IEEE Transactions on.

[25] P. Flach, Roc analysis, Encyclopedia of Machine Learning. Berlin Heidelberg:

Springer (2010) 869–874.

[26] G. Hughes, On the mean accuracy of statistical pattern recognizers, Information

Theory, IEEE Transactions on 14 (1) (1968) 55–63.

[27] K. Spackman, Signal detection theory: Valuable tools for evaluating inductive

learning, in: Proceedings of the sixth international workshop on Machine learn-

ing, Morgan Kaufmann Publishers Inc., 1989, pp. 160–163.

[28] M. Scott, M. Niranjan, R. Prager, Realisable classifiers: Improving operating per-

formance on variable cost problems, in: Proceedings of the Ninth British Machine

Vision Conference, Vol. 1, Citeseer, 1998, pp. 304–315.

[29] H. Li, Q. Zhang, Multiobjective optimization problems with complicated pareto

sets, moea/d and nsga-ii, Evolutionary Computation, IEEE Transactions on 13 (2)

(2009) 284–302.

[30] T. Weise, Global Optimization Algorithms – Theory and Application, it-weise.de

(self-published): Germany, 2009.

URL http://www.it-weise.de/projects/book.pdf

29

http://dx.doi.org/10.1007/s12065-010-0047-7
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf

[31] K. Deb, A. Pratab, S. Agrawal, T. Meyarivan, A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation

(IEEE-EC) 6 (2) (2002) 182–197.

[32] Q. Zhang, H. Li, Moea/d: A multiobjective evolutionary algorithm based on

decomposition, Evolutionary Computation, IEEE Transactions on 11 (6) (2007)

712–731.

[33] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case

study and the strength pareto approach, Evolutionary Computation, IEEE Trans-

actions on 3 (4) (1999) 257–271.

[34] K. Bringmann, T. Friedrich, F. Neumann, M. Wagner, Approximation-guided

evolutionary multi-objective optimization, in: Proceeding of the Twenty-Second

International Joint Conference on Artificial Intelligence, Barcelona, Spain, 2011,

pp. 1198 – 1203.

[35] L. Jin, FGP: A genetic programming based financial forecasting tool, Phd Thesis,

Citeseer, 2000.

[36] J. Backus, The syntax and semantics of the proposed international algebraic lan-

guage of the zurich acm-gamm conference, Proceedings of the International Com-

ference on Information Processing, 1959.

[37] N. Beume, B. Naujoks, M. Emmerich, Sms-emoa: Multiobjective selection based

on dominated hypervolume, European Journal of Operational Research 181 (3)

(2007) 1653–1669.

[38] E. Zitzler, L. Thiele, An Evolutionary Algorithm for Multiobjective Optimiza-

tion: The Strength Pareto Approach, TIK-Report 43, Eidgenössische Technische

Hochschule (ETH) Zürich, Department of Electrical Engineering, Computer En-

gineering and Networks Laboratory (TIK): Zürich, Switzerland (May 1998).

[39] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evo-

lutionary Algorithm, TIK-Report 101, Eidgenössische Technische Hochschule

(ETH) Zürich, Department of Electrical Engineering, Computer Engineering and

Networks Laboratory (TIK): Zürich, Switzerland, errata added 2001-09-27 (May

2001).

[40] T. Weise, R. Chiong, K. Táng, Evolutionary Optimization: Pitfalls and Booby

Traps, Journal of Computer Science and Technology (JCST) 27.

[41] P. Wáng, K. Táng, E. P. K. Tsang, X. Yáo, A Memetic Genetic Programming with

Decision Tree-Based Local Search for Classification Problems, in: Proceedings

of the 12th IEEE Congress on Evolutionary Computation (CEC’11), 2011, pp.

917–924. doi:10.1109/CEC.2011.5949716.

[42] UCI, Uc irvine machine learning respository (2009).

URL http://archive.ics.uci.edu.c/ml

30

http://dx.doi.org/10.1109/CEC.2011.5949716
http://archive.ics.uci.edu.c/ml
http://archive.ics.uci.edu.c/ml

[43] J. Quinlan, C4. 5: programs for machine learning, Morgan Kaufmann, 1993.

[44] I. Rish, An empirical study of the naive bayes classifier, in: IJCAI 2001 Workshop

on Empirical Methods in Artificial Intelligence, Vol. 3, 2001, pp. 41–46.

[45] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin

1 (6) (1945) 80–83.

This is a preview version of paper [2] (see page 31 for the reference). It is posted here

for your personal use and not for redistribution. The final publication and definite

version is available from Elsevier (who hold the copyright) at

http://www.sciencedirect.com/. See also

http://dx.doi.org/10.1016/j.neucom.2012.06.054.

@article{WTWTY2013MOGPFMRP,

author = {Pu Wang and Ke Tang and Thomas Weise and

Edward P. K. Tsang and Xin Yao},

title = {{Multiobjective Genetic Programming for Maximizing ROC

Performance}},

publisher = {Essex, UK: Elsevier Science Publishers B.V.},

journal = {Neurocomputing},

volume = {125},

pages = {102--118},

year = {2014},

month = feb # {˜11, },

url = {http://arxiv.org/abs/1303.3145},

doi = {10.1016/j.neucom.2012.06.054},

eiid = {IP52489144},

},

31

http://www.sciencedirect.com/
http://dx.doi.org/10.1016/j.neucom.2012.06.054

	Introduction
	Related Work
	ROCCH in Classification
	Genetic Programming for Classification

	ROCCH, Classification, and Multiobjective Optimization
	Overview of ROCCH in Classification Problems
	ROC Graph and ROCCH

	ROCCH and Multiobjective Problems

	Multiobjective Genetic Programming for ROCCH Maximization
	GP framework for Classification Problems
	Tree-based individuals for classification

	Multiobjective Genetic Programming
	Evolutionary Multiobjective Algorithms
	Operators used in MOGP
	MOGP for classification problems

	Experimental Studies
	Data Sets
	Algorithms involved
	Validation and Configuration
	Crossvalidation
	Configurations

	Results
	Results of MOGP without and with local search
	Results of singleobjective GP and traditional machine learning algorithms
	Analysis on MOGP for maximizing the ROC performance
	Time cost of all algorithms

	Conclusion and future work
	MOGP Algorithms

