
From Standardized Data Formats to Standardized

Tools for Optimization Algorithm Benchmarking

Thomas Weise

Institute of Applied Optimization, Faculty of Computer Science and Technology,

Hefei University, Hefei 230601, Anhui, China

tweise@hfuu.edu.cn

Abstract—Benchmarking, the empirical algorithm perfor-
mance comparison, is usually the only feasible way to find which
algorithm is good for a given problem. Benchmarking consists of
two steps: First, the algorithms are applied to the benchmarking
problems and data is collected. Second, the collected data is
evaluated. There is little guidance for the first and a lack of
tool support for the second step. Researchers investigating new
problems need to implement both data collection and evaluation.
We make the case for defining standard directory structures
and file formats for the performance data and metadata of
experiments with optimization algorithms. Such formats must
be easy to read, write, and to incorporate into existing setups.
They would allow more general tools to emerge. Researchers
then would no longer need to implement their own evaluation
programs. We derive suitable formats by analyzing what existing
tools do and what information they need. We present a general
tool, the optimizationBenchmarking.org framework, including an
open source library for reading and writing data in our format.
Since our framework obtains its data from a general file
format, it can assess the performance of arbitrary algorithms
implemented in arbitrary programming languages on arbitrary
single-objective optimization problems.

This is a preview version of paper [1] (see page 9 for the

reference). It is posted here for your personal use and not for

redistribution. The final publication and definite version is

available from IEEE (who hold the copyright) at

http://www.ieee.org/.

I. INTRODUCTION

Optimization is a field of incredible versatility with many

application areas, including logistics, supply chain manage-

ment, production scheduling, finances, engineering design,

data mining, medicine, and algorithm synthesis – to just name

a few. For almost every real-world application of optimization,

a new approach needs to be designed as any scenario has

specific requirements [2].

This naturally leads to the question which approach is best

for a certain application. Answering such a question based

on mathematics and theoretical computer science is rarely

possible [3], leaving experimentation and benchmarking as the

technology of choice.

Due to the wide variety of problem types, a wide variety of

benchmark problems has evolved. During the last decade, a

set of tools for assessing algorithm performance has emerged

as well. These tools are usually bound to a certain problem or

algorithm type. This means that the vast majority of statistics

over experimental results reported in papers has been obtained

manually by researchers, either by writing their own set of

problem-specific tools or by only relying on simple (and often

brittle) sample statistics and using software such as Excel.

We believe that the key to developing tools which are

applicable to many different problem and algorithm types is to

define simple standard file formats. We propose the following

requirements:

1) Data in such formats must be easy to read or write, both

programmatically as well as manually.

2) It must be very simple to modify existing experimental

setups to produce data in these formats.

3) It must be very simple to read and write data in such

formats using existing tools such as Excel, R, and

Matlab.

4) It must be possible to represent both raw data gathered

from experiments and metadata such as algorithm pa-

rameters and instance features. While the former may be

sufficient for descriptive statistics, inferential statistics

require the latter as well.

Such file formats can improve the rigor in experimentation,

as they indirectly guide researchers to collect data sufficient

for a sound analysis. They furthermore make it much easier to

exchange data. We analyze the requirements for such formats

for both raw measurements and experiment metadata in-depth.

We provide example solutions for these requirements based on

our own optimizationBenchmarking.org framework, showing

that a tool working with such formats by default can assess

the performance of almost arbitrary algorithms implemented in

arbitrary programming languages applied to arbitrary single-

objective problems.

We first discuss a) the need to measure more than just

“final” results and b) the advantages of using multiple time

measures during experimentation in Section II. From these

requirements, we derive a simple text-based format (space-

separated values) to represent the measurements from single

runs of optimization algorithms. We complement this format

with a specification of what time measures were applied

in XML [4]. Since both formats are text-based and to be

evaluated by tools after the experiments, the programming

languages used to implement algorithms becomes irrelevant.

Producing data in these formats is also very easy.

In Section III, we list several existing tools for visualiz-

ing performance data and for providing descriptive statistics.

Given the above information, these or similar tools could be

mailto:tweise@hfuu.edu.cn
http://www.optimizationBenchmarking.org
http://www.ieee.org/
http://www.optimizationBenchmarking.org

reported arbitrary data points
from runs of , , and ZX Y

runtime

(s
o
lu

ti
o
n
 c

o
s
t)

o
b
je

c
ti
v
e
 v

a
lu

e

(a) Based on the reported results,
methods X, Y, Z may be misinter-
preted as alternatives for different
computational budgets in the Pareto
sense, but Z is always better.

runtime

comparison of two algorithms
- it matters when -

(s
o
lu

ti
o
n
 c

o
s
t)

o
b
je

c
ti
v
e
 v

a
lu

e

V
W

(b) Comparing two anytime algo-
rithms at only one point in time
might yield entirely different results,
depending on how that point is cho-
sen.

Fig. 1: Example for problems with algorithm comparisons

based on single (runtime, objective value) tuples.

applied to more general datasets if the location of the data files

was clear. Hence, we derive a simple folder structure so that

a tool can find the data gathered in an experiment regardless

of the type of algorithm applied and regardless of the problem

under investigation.

The main goal of research is to find the reasons that cause

the phenomena observed by the scientist. In the context of

research on optimization, this could mean, for instance, to

suggest which feature renders a problem hard or why a par-

ticular algorithm setup performs well. Besides our optimiza-

tionBenchmarking.org framework, there are few tools in this

line of research and most of them consider only final results

from experiments or can only deal with different setups of a

single algorithm, as outlined Section IV. Nevertheless, such

tools require meta-information about the experiments, namely

the problem instance features and algorithm parameters. We

discuss how these information can be represented in an XML

format.

In Section V, we give a more formal definition of the

above derived data structures. We then describe how our op-

timizationBenchmarking.org framework works with such data

in Section VI. This framework is open source and provides a

Java library for reading and writing all involved formats. We

summarize our discussions and give pointers to future work

in Section VII.

II. PERFORMANCE DATA OF SINGLE-OBJECTIVE

ALGORITHMS

A. Experimentation with Anytime Algorithms

A very large fraction of the available optimization algo-

rithms are anytime algorithms [5]: Evolutionary Algorithms

(EAs) [6, 7], Local Search (LS) [7, 8], Ant Colony Opti-

mization (ACO) [7, 9], and even some exact methods like

Branch and Bound (B&B) [10, 11] belong to this category.

Anytime algorithms can provide an approximate solution for

a problem at any point during their execution. The quality

of this approximation may improve over time. Many machine

learning approaches proceed in such a manner as well. This in-

cludes algorithms that involve iterative learning, such as back-

propagation [12, 13], or algorithms which iteratively refine

their data structures as done in, e.g., k-means clustering [14].

Due to this anytime character, it is possible that an algorithm

V initially produces worse solutions than an algorithm W,

but eventually reaches better approximations. Yet, many if

not most publications report only statistics based on results

measured at a selected single point in the algorithm execution,

which cannot represent such situations. This may lead to

problems such as those shown in Figure 1 and pointed out

in [15–17] for optimization and in [18] for machine learning.

Besides these problems, it is also methodically wrong:

Metaheuristics are usually applied to problems where either

the objective value of the global optimum is not known and

often even a lower bound cannot be provided and/or in cases

where solving the problem exactly takes too long. This means

we can often not expect to find the global optimum and in

many problems (in particular those proven to be NP-hard),

the runtime needed actually find the global optimum would

be way too long. In other words, for any finite computational

budget, we would hope that optimization process would keep

improving. While the improvements may become exponen-

tially smaller (similar to the law of diminishing returns [19]),

we would hope that they do exist. In such a scenario, there

is no natural “end” and the decision when to actually stop

the optimization process becomes arbitrary, often based on

the computational resources available to the particular experi-

menter. Listing “results” would imply some non-existing form

of finality and unintentionally obscure this reality.

In order to make robust decisions which algorithms

to use for varying computational budgets, sufficient data

to reasonably-well approximate the “runtime-approximation

quality” relationships of optimization processes should be

collected. Based on such data, it can also become visible when

further improvements become negligible. Having only singular

results forces us to trust that the experimenter hopefully

has made the right decisions (and did not intentionally or

unintentionally create situations as depicted in Figure 1).

B. Measuring Runtime

This leads to the question of how runtime should be mea-

sured. We can distinguish machine-dependent and machine-

independent ways for doing so. Traditionally, runtime is ei-

ther measured in CPU seconds or the number of generated

candidate solutions (i.e., objective “function evaluations”, or

FEs in short). The problem with using CPU time is that

it is strongly machine-dependent, being influenced by the

hardware and software setup, and that results obtained on

different machines are thus inherently incomparable. FEs, on

the other hand, are a machine-independent time measure and

results provided in terms of FEs will remain valid. However,

unlike the computational complexity of an algorithm, which

they are intended to somewhat approximate empirically, FEs

cannot give information about the actual overall runtime of an

algorithm, since they do not include any setup and overhead

time and because 1 FE may have different computational

complexities in different algorithms.

Let us discuss the latter issue on the example of the

Traveling Salesman Problem (TSP), where the goal is to find

the shortest round-trip visiting sequence of n cities [17]. Here,

http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org

1

4

16

18

22

23

32

283

291

.....

16283

61845

9805

24743

106140

117529

125373

148882

173345

1670215

1766434

........

83864956

338568768

45

27

23

22

20

19

17

16

13

..

2

0

sample

FEs (generated solutions)

RT (in nanoseconds)

F (number of false clauses)

1 run per data file in text
format, 1 column per
dimension, separated by
space or tab, 1 row per sample

Fig. 2: One example of a text file with data points describing

the progress of one run of a hill climbing algorithm on a

maximum satisfiability problem instance.

<?xml version="1.0" encoding="UTF-8"?>

<dimensions xmlns="http://www.optimizationBenchmarking.org/formats/...">

<dimension name="FEs"

description="The number of function evaluations, i.e., the amount of

generated candidate solutions."

dimensionType="iterationFE" direction="increasingStrictly" dataType="long"

iLowerBound="1" />

<dimension name="RT" description="The elapsed runtime in nanoseconds."

dimensionType="runtimeCPU" direction="increasing" dataType="long"

iLowerBound="0" />

<dimension name="F" description="The number of unsatisfied clauses."

dimensionType="qualityProblemDependent" direction="decreasing"

dataType="int" iLowerBound="0" iUpperBound="2000" />

</dimensions>

Fig. 3: An example of the dimension annotation with the

optimizationBenchmarking.org XML format EDI.

an LS algorithm may obtain a new solution from an existing

tour of known length by swapping two cities, which has the

complexity of O(1). A crossover operator in an EA would

usually create a new tour in a more complicated way and thus

need to calculate the length of that tour, i.e., would usually

need at least O(n) steps [20]. In ACO for the TSP, the creation

of one new solution has time complexity O(n2). In other

words, if the ACO and LS would reach the same tour length in

the same number of FEs, saying that they are as same as good

would be grossly unfair towards the LS. This issue is surely

not limited to the TSP, but we have never seen it addressed in

any publication basing its results on FEs.

One way to make runtime measurements “more” compa-

rable over different machines, at least to a certain degree,

would be to normalize them by machine- and problem-

specific performance indicators [17]. One way to obtain better

machine-independent measures would be to develop finer-

grained, problem-specific time measures, such as the number

of distance matrix accesses for the TSP [17] or the number of

bit flips for Boolean satisfiability problems [21]. Using both

machine-dependent and independent time measures at once

might be the best solution.

C. Data Format

We find that it is necessary to gather data describing the

progress of an optimization method over time. We also find

that measuring time with only time measure will potentially

not tell us the whole story [17, 22].

1) Raw Experimental Data: A data format for describ-

ing one run of one optimization algorithm on one problem

instance should allow us to collect multiple data points.

Each data point should represent the solution quality reached

(obviously monotonously improving)1 and the time consumed

(monotonously increasing). While a single-objective problem

demands for a single quality value per data point, there might

be multiple time values, namely one per time measure (e.g.,

consumed runtime in ms, consumed runtime in FEs, . . .). Since

this is a very simple structure, using simple text files to store

such data, one file per algorithm run per problem instance,

as sketched in Figure 2, seems to be a reasonable choice.

The columns inside the text files are separated by spaces or

tabs. The last column should be the column with the objective

values. Such files are easy to read and to write and can be

parsed by common tools such as R, Matlab, and Excel.

2) Meta-Data about Measurement Dimensions: While this

format itself is sufficiently general, it may also make sense to

provide additional metadata. Since there might be arbitrarily

many columns, as we can measure time in several different

ways, the metadata should specify which column stands for

which dimension and maybe assign a name to a column. Our

optimizationBenchmarking.org framework therefore uses an

XML dialect called Experiment Data Interchange (EDI) [23]

which can provide these information, but also allows us to

specify the monotonous “direction” of the dimension, its basic

data type, and value range limits. Figure 3 provides the

metadata file dimensions.xml accompanying the experiment

from which also Figure 2 stems.

In the optimizationBenchmarking.org framework, dimension

names can be used in mathematical expressions, allowing

arbitrary transformations of axes and specifying which data

columns to use in certain diagrams. The metadata is also used

to create compact data structures with very fast lookup and

search functionality on the fly via in-memory code generation

and for strict sanity checks. A researcher may choose to write

such a dimensions.xml file manually or by using the graphical

editor of the optimizationBenchmarking.org GUI requiring no

XML knowledge.

Still, providing the dimension information is optional: It is

not required for simple evaluations, especially in the case of

a single time dimension. This means we propose a set of data

formats which can complement each other, but a researcher

may also choose to stick to a very simple baseline.

III. MINING DESCRIPTIVE INFORMATION

A. Existing Software Tools

As we have discussed in the previous section, if the whole

runtime behavior of algorithms should be compared, quite a

1While it is true that several optimization methods such as Simulated
Annealing or generational EAs with, e.g., (µ, λ)-strategies, may “lose” the
best solution found so far from their population, this holds only from the
perspective of the optimization algorithm. Any sane implementation would,
in such cases, remember the best solution in an additional variable not used
inside the algorithm, in order to eventually return it to the user. This variable
would just not influence the algorithm in any way, i.e., should not be mistaken
for elitism.

http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org

Fig. 4: An example of a general folder structure for experi-

ments.

lot of data needs to be collected in the experiments. Extracting

all necessary information from this data by hand will no

longer be feasible [17]. Several automated tools have been

developed to compute statistics and draw diagrams based on

such comprehensive datasets.

The COCO system [24] for numerical optimization, used

in the Black-Box Optimization Benchmarking (BBOB) work-

shops, is one of the first such approaches. Its evaluation

procedure generates statically structured papers that contain

diagrams such as Empirical Cumulative Distribution Functions

(ECDFs) [24, 25] and Estimated Running Time (ERT) [24]

charts. The necessary data is automatically collected from

automatically executed experiments. The no longer supported

AOAB [26] system provided similar functionality for algo-

rithms solving large-scale numerical problems.

The TSP Suite [17] is a holistic experimentation framework

for the TSP. Its evaluation process makes use of diagrams

similar to those in COCO. All selected evaluation criteria are

combined into algorithm rankings and text-based discussions

and conclusions are generated, resulting in comprehensive

reports instead of rigidly structured papers. Another feature

of the TSP Suite is that it measures runtime in several

different ways at once, in order to analyze both the machine-

independent and machine-dependent algorithm runtime behav-

ior, as proposed in Section II-B.

B. Data Format

The existing tools listed in the selection above all are

applicable only to specific problems. However, these tools

could in principle work with data provided as specified in

Section II-C. One obstacle is that they require data to be stored

in a specific structure of file names and folders. This structure

would be different when conducting experiments with arbitrary

algorithms on arbitrary benchmark instances.

This problem can easily be solved by prescribing a folder

structure as follows: In the root folder of the experiment data,

there be the file dimensions.xml (see Figure 3). Furthermore,

for each algorithm setup, one folder with a corresponding

name be created. Inside this folder, there be one sub-folder for

each benchmark instance. In such a sub-folder, there be one

text file of arbitrary name with one column per measurement

dimension and one data sample per row, as sketched in

Figure 2. Figure 4 illustrates such a structure for an experiment

where six algorithms (1FlipHC to mFlipHCrs) were compared

on nine benchmark instances (uf020-01 to uf020-09) and

twenty runs were conducted per algorithm/instance combina-

tion. This structure is again easy to implement, intuitive to

understand, and easy to process by tools.

IV. MINING INFERENTIAL INFORMATION

A. Existing Tool Support

The work of a researcher includes inference from and

generalization of the phenomena observed in experiments.

This involves finding the reasons for these phenomena as well

as predicting possible outcomes in yet untested scenarios.

Predicting algorithm performance [27, 28] is a common

task in algorithm selection [29, 30] and algorithm portfo-

lios [31, 32]. Here, the goal often is to choose the algorithm

most suitable to solve a given problem in terms of a single

performance metric. Usually, it is attempted to either

1) predict this metric for each algorithm in the portfolio

based on the features of the problem instance to be

solved or to

2) classify problem instances based on their features, while

knowing from previous experiments which algorithm is

likely to be most suitable for a given class.

The hardness of a problem instance can be assessed based

on the performance of an algorithm [33] on it. A logical

continuation and combination of algorithm performance and

instance hardness prediction is provided by Hutter et al. [28].

They propose an automated way to identify the key parameters

of algorithms, the key features of problem instances and their

interactions, and to predict parameter values which are likely

to yield good performance.

Fawcett and Hoos [34] developed an automated method to

explain which parameters contribute the most to the difference

between two existing setups in terms of a single performance

metric. This is particularly useful if one of the setup is the

result of automated parameter tuning (see, e.g., [35]), but

requires that the two setups stem from the same algorithm.

Smith-Miles et al. [16, 36, 37] generate diverse benchmark

instances of a given problem type with an EA. They can

then cluster the instances by the search effort required by the

investigated solvers [37] and predict areas (called the footprint)

in the instance feature space where an algorithm performs

well [16]. The power of the solvers can be measured by

comparing the overlap and relative size of their footprints.

The impact on benchmark features on the performance labels

gets analyzed by using machine learning.

Qi et al. [38] first model the performance of an optimiza-

tion algorithm and then mine the relationship of the model

parameters to both, algorithm behaviors and instance hardness.

They can predict the behavior of algorithms on unseen problem

instances based on the modeled behavior on already analyzed

on instances by learning the mapping of instance features to

model parameters.

B. Data Format

The data collection scheme we prescribe so far would

be feasible for these tools as well. However, in order to

discover the impact of an algorithm setup parameter or of a

benchmark instance feature, a system for inferential analysis

must additionally know about them. We assume that there may

be arbitrarily many problem instance features and algorithm

parameters, each being numerical or nominal.

If a problem instance feature is defined, it is clear that

a value for this feature must exist for each instance of the

problem. In the TSP, the number n of cities could be a feature

and clearly this value is known for each TSP instance. Features

could also be descriptive statistics on the instance structure:

Another feature of TSPs could be the coefficient of variation of

the distances between any two cities, which clearly is defined

for any TSP instance with n > 1 cities.

For algorithm parameters, the situation is slightly different:

An EA can have a parameter “crossover operator” which

would be undefined in a LS. Therefore, we propose to intro-

duce the special parameter value ∅ to be used in such situations

(many machine learning algorithms can handle unspecified

values).

This also raises the question how to deal with optimization

processes measured from different algorithms. We propose

to solve this issue by introducing the nominal parameter

“algorithm” identifying the applied algorithm. Considering the

algorithm itself as a parameter of an experiment has the effect

that it can become subject to inferential analysis just like any

other algorithm parameter, i.e., requires no special treatment.

Assume that we conduct experiments on a satisfiability

problem with a LS and an EA, both using one of the two

different search operators, “one-flip” and “two-flip”. The infer-

ential analysis might then find, for instance, that the choice of

search operator is more important than the choice of algorithm,

vice versa, or the one operator works well with one algorithm

while other setups do not perform well.

Based on these considerations, we notice an interesting

duality: Algorithms have parameters, instances have features.

If a software tool can discover the feature setting that makes

<?xml version="1.0" encoding="UTF-8"?>

<instances xmlns="http://www.optimizationBenchmarking.org/formats/...">

<instance name="uf020-01"

description="A uniformly randomly generated satisfiable 3-SAT instance

with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance>

...

<instance name="uf050-01"

description="A uniformly randomly generated satisfiable 3-SAT instance

with 50 variables and 218 clauses.">

<feature name="n" value="50" />

<feature name="k" value="218" />

</instance>

....

<instance name="uf075-01"

description="A uniformly randomly generated satisfiable 3-SAT instance

with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance>

...

</instances>

Fig. 5: An example of the benchmark instance feature speci-

fication with the optimizationBenchmarking.org XML format

EDI [23], as to be placed into the root data folder as sketched

in Figure 4.

<?xml version="1.0" encoding="UTF-8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/..."

name="1FlipHC" description="An experiment with a 1-flip Hill Climber

without restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="false" />

</experiment>

Fig. 6: An example of the algorithm setup parameter specifi-

cation with the optimizationBenchmarking.org XML format

EDI [23], one of which would be to be placed into each

algorithm setup folder, as sketched in Figure 4.

benchmark problems hard (easy) for the investigated algo-

rithms, the very same tool could be used to discover which

algorithm parameter settings lead to bad (good) algorithm

performance. Both cases are two sides of the same medal, as

both influence the runtime-quality relationships of optimiza-

tion processes.

The EDI format of our optimizationBenchmarking.org

framework allows specifying both algorithm parameters

and instance features as discussed above. A file named

instances.xml should be placed in the root folder (see Sec-

tion III-B) and it defines the feature values for each benchmark

problem instance. The names of the benchmark instances used

in this file must be exactly (case-sensitive) the same as the

names of the instance folders in the folder structure. An

example is given in Figure 5. Besides specifying instance

features, this format also allows for specifying lower and

upper bounds for each measurement dimension for an instance,

which, e.g., can be used to specify the objective values of

global optima, if any.

Similarly, each folder for an algorithm setup can contain

one file experiment.xml describing the parameters of the

algorithm applied (and the algorithm itself as parameter). This

structure allows for re-using benchmark instance descriptions

and for easily adding new algorithm setups. Using it is entirely

optional, i.e., allows the researcher to choose whether she

wants to provide the metadata to use more sophisticated tools

http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org

or not. An example is given in Figure 6

V. FORMAL DESCRIPTION

Let us now describe the anecdotally derived data format

from the previous three sections in a more formal way.

Experiments are performed with a set A or setups of algo-

rithms a ∈ A. An algorithm setup a is characterized by a

vector ~p(a) = (p1(a), p2(a), . . . , pnP
(a)) of values p(a) of

parameters p. A parameter may be nominal or numerical. The

space of all parameter vectors from a set of experiments be P.

If multiple different algorithms are investigated, the algo-

rithm applied in an experiment can be identified by a nominal

parameter. This way, the same analysis methods used to assess

the impact of the algorithm parameters can be applied to assess

the impact of the choice of algorithm itself. Since different

algorithms may have different parameters, a parameter can

also take on the unspecified value ∅. We refer to “algorithm

setup” as algorithm synonymously.

Each algorithm is applied to a set I of problem instances

i ∈ I . A problem instance is characterized by a vector
~f(i) = (f1(i), f2(i), . . . , fnF

(i)) of values f(i) of features

f . A feature may be nominal or numerical. The space of all

feature vectors be F. Different from parameters, all features

must be specified for all instances.

Instance features and algorithm parameters are similar from

the perspective of analysis. If we can analyze the impact of

an algorithm parameter p on the performance based on the

observed behavior on all problem instances i ∈ I , we can

apply the same method to analyze the impact of a problem

feature f based on the behavior of all algorithms a ∈ A.

In the experiments, data is collected during the execution

of several independent runs ra,i for each algorithm a ∈ A on

each problem instance i ∈ I . The number of collected samples

ρ may differ from run to run. Samples may be collected at

specific points in time, e.g., after certain amounts of FEs [39,

40] or milliseconds have passed, when certain goal solution

qualities have been reached [24], or all of the above [17],

which we consider the best idea.

We limit our considerations to two types of measurement

dimensions, namely time and quality measures. T be the set of

time dimensions t ∈ T . At least one time dimension must be

measured in the experiments. Q be the set of solution quality

dimensions measured in the experiments. A quality dimension

q ∈ Q represents the values of an objective function. We

assume that an optimization algorithm never “loses” its best-

so-far solution. (A generational EA could store its best solution

in an additional variable even if it drops out of the population.)

We limit our considerations to single-objective problems with

|Q| = 1. Other types of dimensions such as the memory

consumed by the algorithm are not considered at the moment.

At first glance, this way of representing algorithm runtime

behavior may seems to be similar to time series [41, 42], but

there are significant differences: There can be multiple time

dimensions, multiple runs form one semantic unit, and the

measured samples may not be equidistant in any dimension.

More similarities are shared with the functional data [43, 44]

concept, although the overall structure of runs belonging to

algorithm setups applied to problem instances and the need to

also consider the metadata makes the inferential analysis of

algorithm behaviors significantly more complex and challeng-

ing. Evaluating optimization algorithms in a robust, rigorous,

methodologically clean, and statistically sound way is indeed

an endeavor bringing us right to the frontier of statistics and

machine learning!

VI. IMPLEMENTATION:

OPTIMIZATIONBENCHMARKING.ORG

In 2014, we devised an open source benchmarking system

for the TSP called the TSP Suite [3, 11, 17]. This framework

enabled the benchmarking and sound comparison of different

TSP solvers. We now have developed a generalized software,

the optimizationBenchmarking.org framework, which can be

applied to arbitrary optimization problems to compare arbi-

trary algorithms. We found that the enabler of such a general

approach is a clear and simple and versatile file format as

introduced in this paper.

An overview of the data evaluation procedure of our frame-

work is given in Figure 7. The system operates on the data

formats introduced here and the directory structure given in

Figure 4. All XML/EDI files needed can be generated using

a comfortable editor form provided by the user interface

(Figure 8) of our system, which does not require any previous

knowledge of or direct contact with XML.

Given all these data, the user can now choose what in-

formation she would like to obtain by selecting and con-

figuring any number of the available evaluation modules

(evaluation.xml). After selecting suitable output (LATEX,

XHTML, text export) and graphics (pdf, eps, svg, png, . . .)

format and data locations, she can start the evaluation proce-

dure. As a result, she will obtain a report, not unlike a small

article, containing textual descriptions of the extracted results

and automated findings.

The optimizationBenchmarking.org frame-

work is an open source software provided at

http://optimizationBenchmarking.github.io.

It comes either as Java executable, which can automatically

detect and use LATEX and R installations under both Windows

and Linux, or as Docker [45] image, which does not require

any additional installations and can be used under Linux,

Windows, and Mac OS. A web-based user interface which

can be accessed via any common browser is provided.

The framework is designed in a modular way and divided

into several libraries which are managed at https://www.github.

com/optimizationBenchmarking. The library evaluator-base

provides I/O modules for reading, manipulating, and writing

EDI data.

VII. CONCLUSIONS

Benchmarking of algorithms is important. What makes

benchmark results good? From the perspective of research,

http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
https://www.github.com/optimizationBenchmarking
https://www.github.com/optimizationBenchmarking

XHTML

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

LTEXA

Graphic
Output

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Data

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

eval-
uation
.xml

Document
Output

Fig. 7: The flow of using the optimizationBenchmarking.org framework: The data measured from runs R for each algorithm

a ∈ A applied to each problem instance i ∈ I are provided as text files. The metadata, i.e., the parameters, features, and the

properties of the time dimensions t ∈ T and quality dimension q can be specified in the XML format EDI [23]. Via additional

XML files, the user can choose the evaluation modules to apply as well as the graphics and output formats. For the latter,

LATEX, XHTML, and a text format for data export to other application is supported.

Optimization Benchmarking

// Events

Type When What

2016-10-18 13:05:58 Succeeded in setting the current path to 'maxSAT/results'. The full path is now

'maxSAT/results'.

// Path

/ / maxSAT/ results / cd

OK

Currently Chosen Action: Change into the specify directory, create it if it does not exist yet.

upload

upload uploads a set of files. Uploaded zip archives are automatically extracted.

// Current Folder

name size changed !

maxSAT

1FlipHC

1FlipHCrs

2FlipHC

2FlipHCrs

mFlipHC

mFlipHCrs

dimensions.xml 762 B 2016-10-03 07:22

instances.xml 22 KiB 2016-10-03 07:22

"

Selected element(s): remember OK

Currently Chosen Action: Remember the selected files. The files will be listed at the bottom of the

controller window. Remembering files allows you to pick files from different directories, e.g., for download,

without having to choose the complete directories.

Version 0.8.8. Server time: 2016-10-18 13:05:58.

[group page] • [GitHub page] • [atom feed] • [RSS feed]

home

control center

set log level

examples

help

the system

how-tos

the process

file types

about

University and the University of

Science and Technology of

China (USTC). Supported by the

Fundamental Research Funds

for the Central Universities.

http://localhost:8080/controller.jsp?cd=maxSat%2Fresults&subm...

Optimization Benchmarking GUI

Developed at the Institute of

Applied Optimization at the

Faculty of Computer Science

and Technology of the Hefei

Fig. 8: A sketch of the web-based user interface of our

optimizationBenchmarking.org framework.

good results are those which are rigorously analyzed, statis-

tically sound, and stem from methodologically clean experi-

ments and evaluation procedures. We brought forward several

issues that arise when collecting data in experiments with

anytime algorithms in Section II. Proper experimentation can

lead to lots of data, which requires tool support. Experimental

results, being summaries of the data, e.g., diagrams, descrip-

tive, or inferential statistics, can thus only be as good as

the tools used to extract them. Unfortunately, the field of

optimization is extremely wide with a vast amount of different

problems and existing tool support is often focused on narrow

problem domains or specific algorithms.

More general tools are needed, because tools which can

be used by more researchers in more scenarios would be

tremendously helpful. Also, such tools would be assessed by

more researchers so that methodological errors are more likely

to be discovered and the tools get better over time. We make

the case for trying to reach a consensus regarding file formats

for representing data from a wide range of experiments,

namely all kinds of single-objective problems. If we can agree

on such data formats and both researchers on optimization as

well as researchers on evaluation tools use them, this would

bring us automatically much closer to this goal.

In Sections III and IV we discuss the requirements for such

a data format and propose an example solution as used in

our optimizationBenchmarking.org framework, with which we

are able to analyze a very wide range of algorithms (LS,

EAs, hybrid algorithms, ACO, B&B. . .) on a wide range

of problems (TSP, satisfiability, numerical optimization. . .).

We hope that this can be a good starting point for further

discussions.

Acknowledgments We acknowledge support from the Na-

tional Natural Science Foundation of China under Grants

61673359, 61150110488, and 71520107002 and the Funda-

mental Research Funds for the Central Universities.

REFERENCES

[1] T. Weise, “From standardized data formats to standardized tools for
optimization algorithm benchmarking,” in Proceedings of the 16th

IEEE Conference on Cognitive Informatics & Cognitive Computing

(ICCI*CC’17), Jul. 26–28, 2017, University of Oxford, Oxford, UK. Los
Alamitos, CA, USA: IEEE Computer Society Press.

[2] Variants of Evolutionary Algorithms for Real-World Applications.
Berlin Heidelberg: Springer, 2011.

http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org
http://www.optimizationBenchmarking.org

[3] T. Weise, Y. Wu, R. Chiong, K. Tang, and J. Lässig, “Global versus
local search: The impact of population sizes on evolutionary algorithm
performance,” Journal of Global Optimization, vol. 66, pp. 511–534,
2016.

[4] B. DuCharme, XML: The Annotated Specification. Upper Saddle River,
USA: Prentice Hall, 1999.

[5] M. S. Boddy and T. L. Dean, “Solving time-dependent planning
problems,” Brown University, Department of Computer Science,
Providence, USA, Tech. Rep. CS-89-03, 1989. [Online]. Available:
ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Boston, USA: Addison-Wesley, 1989.
[7] T. Weise, Global Optimization Algorithms – Theory and Application.

it-weise.de (self-published), 2009. [Online]. Available: http://www.
it-weise.de/projects/book.pdf

[8] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and

Applications. San Francisco, USA: Morgan Kaufmann, 2005.
[9] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, USA:

MIT Press, 2004.
[10] W. Zhang, “Truncated and anytime depth-first branch and bound: A case

study on the asymmetric traveling salesman problem,” in AAAI Spring

Symp. Series: Search Techniques for Problem Solving Under Uncertainty

and Incomplete Information, ser. AAAI Technical Report, vol. SS-99-07.
AAAI, Menlo Park, USA, 1999, pp. 148–155.

[11] Y. Jiang, T. Weise, J. Lässig, R. Chiong, and R. Athauda, “Comparing
a hybrid branch and bound algorithm with evolutionary computation
methods, local search and their hybrids on the TSP,” in Proc. of the

IEEE Symp. on Computational Intelligence in Production and Logistics

Systems (CIPLS’14), Dec. 9–12, 2014, Orlando, USA. IEEE, Los
Alamitos, USA, pp. 148–155.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[13] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the marquardt algorithm,” IEEE Transactions on Neural Networks,
vol. 5, no. 6, pp. 989–993, 1994.

[14] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions

on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.
[15] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach

to hard computational problems,” Science, vol. 275, no. 5296, pp. 51–54,
1997.

[16] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis, “Towards
objective measures of algorithm performance across instance space,”
Computers & Operations Research, vol. 45, pp. 12–24, 2014.

[17] T. Weise, R. Chiong, K. Tang, J. Lässig, S. Tsutsui, W. Chen,
Z. Michalewicz, and X. Yao, “Benchmarking optimization algorithms:
An open source framework for the traveling salesman problem,” IEEE

Computational Intelligence Magazine (CIM), vol. 9, no. 3, pp. 40–52,
Aug. 2014.

[18] G.-C. Christophe, “Beyond predictive accuracy: What?” in Workshop on

Upgrading Learning to Meta-Level: Model Selection and Data Trans-

formation at the 10th European Conf. on Machine Learning (ECML-98),

Apr. 21–23, 1998, Chemnitz, Germany, 1998, pp. 78–85.
[19] P. A. Samuelson and W. D. Nordhaus, Microeconomics. McGraw-Hill,

Boston, USA, 2001.
[20] D. Whitley, D. Hains, and A. E. Howe, “Tunneling between optima:

Partition crossover for the traveling salesman problem,” in Proc. of the

Genetic and Evolutionary Computation Conference, GECCO ’09, Jul. 8-

12, 2009, Montreal, Canada. ACM, New York, USA, pp. 915–922.
[21] D. A. D. Tompkins and H. H. Hoos, “UBCSAT: An implementation and

experimentation environment for SLS algorithms for SAT and MAX-
SAT,” in Revised Selected Papers from the 7th Intl. Conf. on Theory

and Applications of Satisfiability Testing (SAT’04), May 10–13, 2004,

Vancouver, Canada. Springer, Berlin, Germany, pp. 306–320.
[22] Y. Wu, T. Weise, and R. Chiong, “Local search for the traveling

salesman problem: A comparative study,” in Proceedings of the 14th

IEEE Conference on Cognitive Informatics & Cognitive Computing

(ICCI*CC’15), Jul. 6-8, 2015, Beijing, China. IEEE, pp. 213–220.
[23] T. Weise, “The XML schema for the Experiment Data Interchange

data format, version 1.0,” 2016, xML Schema provided as XSD
file experimentDataInterchange.1.0.xsd as part of the
optimizationBenchmarking.org framework [46]. [Online]. Available:
https://github.com/optimizationBenchmarking/evaluator-base

[24] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter

black-box optimization benchmarking: Experimental setup,” Université
Paris Sud, INRIA Futurs, Orsay, France, Tech. Rep., Mar. 24, 2012.
[Online]. Available: http://coco.lri.fr/BBOB-downloads/download11.05/
bbobdocexperiment.pdf

[25] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms – pitfalls
and remedies,” in Proc. of the 14th Conf. on Uncertainty in Artificial

Intelligence (UAI’98), Jul. 24–26, 1998, Madison, WI, USA. Morgan
Kaufmann, San Francisco, USA, pp. 238–245.

[26] T. Weise, L. Niu, and K. Tang, “AOAB – automated optimization
algorithm benchmarking,” in Companion Publication of the Genetic

and Evolutionary Computation Conf. (GECCO’10), Jul. 7–11, 2010,

Portland, USA. ACM, New York, USA, pp. 1479–1486.
[27] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, “Performance

prediction and automated tuning of randomized and parametric algo-
rithms,” in Proc. of the 12th Intl. Conf. on Principles and Practice of

Constraint Programming (CP 2006), Sep. 25-29, 2006, Nantes, France.
Springer, Berlin, Germany, pp. 213–228.

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Identifying key algorithm
parameters and instance features using forward selection,” in Revised

Selected Papers of the 7th Intl. Conf. on Learning and Intelligent

Optimization (LION 7), Jan. 7-11, 2013, Catania, Italy. Springer,
Berlin, Germany, pp. 364–381.

[29] J. R. Rice, “The algorithm selection problem,” in Advances in Comput-

ers. New York, USA: Academic Press, 1976, vol. 15, pp. 65–118.
[30] J. Kanda, A. Carvalho, E. Hruschka, and C. Soares, “Selection of

algorithms to solve traveling salesman problems using meta-learning,”
Intl. Journal of Hybrid Intelligent Systems (IJHIS), vol. 8, no. 3, pp.
117–128, 2011.

[31] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
Portfolio-based algorithm selection for SAT,” Journal of Artificial In-

telligence Research (JAIR), vol. 32, pp. 565–606, 2008.
[32] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm

portfolios for numerical optimization,” IEEE Transactions on Evolution-

ary Computation, vol. 14, pp. 782–800, 2010.
[33] K. Leyton-Brown, E. Nudelman, and Y. Shoham, “Learning the empiri-

cal hardness of optimization problems,” in Proc. of the 8th Intl. Conf. on

Principles and Practice of Constraint Programming (CP 2002), Sep. 9-

13, 2002, Ithaca, USA. Springer, Berlin, Germany, pp. 556–572.
[34] C. Fawcett and H. H. Hoos, “Analysing differences between algorithm

configurations through ablation,” Journal of Heuristics, vol. 22, no. 4,
pp. 431–458, 2016.

[35] T. Bartz-Beielstein, O. Flasch, P. Koch, and W. Konen, “SPOT: A
toolbox for interactive and automatic tuning in the R environment,”
in Proc. of the 20th Workshop on Computational Intelligence, Dec. 1-

3, 2010, Dortmund, Germany. KIT Scientific Publishing, Karlsruhe,
Germany, pp. 264–273.

[36] K. Smith-Miles and J. I. van Hemert, “Discovering the suitability of
optimisation algorithms by learning from evolved instances,” Annals of

Mathematics and Artificial Intelligence, vol. 61, no. 2, pp. 87–104, 2011.
[37] K. Smith-Miles, J. I. van Hemert, and X. Y. Lim, “Understanding TSP

difficulty by learning from evolved instances,” in Selected Papers from

the 4th Intl. Conf. on Learning and Intelligent Optimization (LION 4),

Jan. 18-22, 2010, Venice, Italy. Springer, Berlin, Germany, pp. 266–
280.

[38] Q. Qi, T. Weise, and B. Li, “Modeling optimization algorithm runtime
behavior and its applications,” in Proc. of the Genetic and Evolutionary

Computation Conf. (GECCO’17), Jul. 15–19, 2017, Berlin, Germany.
ACM, New York, USA, accepted for publication.

[39] K. Tang, Z. Yang, and T. Weise, “Special session on evolutionary com-
putation for large scale global optimization at 2012 IEEE world congress
on computational intelligence,” University of Science and Technology
of China (USTC), School of Computer Science and Technology, Hefei,
Anhui, China, Tech. Rep., Jun. 14, 2012.

[40] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large-
scale global optimization,” University of Science and Technology of
China (USTC), School of Computer Science and Technology, Hefei,
Anhui, China, Tech. Rep., Jan. 8, 2010.

[41] P. Esling and C. Agon, “Time-series data mining,” ACM Computing

Surveys (CSUR), vol. 45, no. 1, 2012.
[42] T. W. Liao, “Clustering of time series data—a survey,” Pattern Recog-

nition, vol. 38, pp. 1857–1874, 2005.
[43] J. Jacques and C. Preda, “Functional data clustering: A survey,” Ad-

vances in Data Analysis and Classification, vol. 8, pp. 231–255, 2014.

ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf
http://www.optimizationBenchmarking.org
https://github.com/optimizationBenchmarking/evaluator-base
http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf
http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf

[44] J. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd ed.
New York, USA: Springer, 2005.

[45] A. Mouat, Using Docker: Developing and Deploying Software with

Containers. Sebastopol, USA: O’Reilly, 2016.
[46] T. Weise, X. Wang, Q. Qi, B. Li, and K. Tang, “Automating scientific

work in optimization,” 2017, under review.

This is a preview version of paper [1] (see page 9 for the

reference). It is posted here for your personal use and not for

redistribution. The final publication and definite version is

available from IEEE (who hold the copyright) at

http://www.ieee.org/.

@inproceedings{W2017FSDFTSDFOAB,

author = {Thomas Weise},

title = {From Standardized Data Formats to

Standardized Tools for Optimization

Algorithm Benchmarking},

booktitle = {Proceedings of the 16th IEEE

Conference on Cognitive Informatics \&

Cognitive Computing (ICCI*CC’17), } #

jul # {˜26--28, 2017, University of

Oxford, Oxford, UK},

address = {Los Alamitos, CA, USA},

publisher = {IEEE Computer Society Press},

}

http://www.ieee.org/

	Introduction
	Performance Data of Single-Objective Algorithms
	Experimentation with Anytime Algorithms
	Measuring Runtime
	Data Format
	Raw Experimental Data
	Meta-Data about Measurement Dimensions

	Mining Descriptive Information
	Existing Software Tools
	Data Format

	Mining Inferential Information
	Existing Tool Support
	Data Format

	Formal Description
	Implementation: optimizationBenchmarking.org
	Conclusions
	References

