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Yan Jiang� , Thomas Weise�y , Jörg Lässigz, Raymond Chiongx, and Rukshan Athaudax

� Joint USTC-Birmingham Research Institute in Intelligent Computation and Its Applications (UBRI),
School of Computer Science and Technology, University of Science and Technology of China;

Hefei, Anhui, China, 230027. Emails: ljjy23@mail.ustc.edu.cn, tweise@ustc.edu.cn
yCorresponding Author.

zDepartment of Computer Science, University of Applied Sciences Zittau/Görlitz;
D-02826 G̈orlitz, Germany. Email: jlaessig@hszg.de

xFaculty of Science and Information Technology, The University of Newcastle;
Callaghan, NSW 2308, Australia. Emails: Raymond.Chiong@newcastle.edu.au, Rukshan.Athauda@newcastle.edu.au

Abstract—Benchmarking is one of the most important ways
to investigate the performance of metaheuristic optimization
algorithms. Yet, most experimental algorithm evaluations in the
literature limit themselves to simple statistics for comparing
end results. Furthermore, comparisons between algorithms from
different “families” are rare. In this study, we use the TSP
Suite – an open source software framework – to investigate
the performance of the Branch and Bound (BB) algorithm for
the Traveling Salesman Problem (TSP). We compare this BB
algorithm to an Evolutionary Algorithm (EA), an Ant Colony
Optimization (ACO) approach, as well as three different Local
Search (LS) algorithms. Our comparisons are based on a variety
of different performance measures and statistics computed over
the entire optimization process. The experimental results show
that the BB algorithm performs well on very small TSP instances,
but is not a good choice for any medium to large-scale problem
instances. Subsequently, we investigate whether hybridizing BB
with LS would give rise to similar positive results like the hybrid
versions of EA and ACO have. This turns out to be true – the
“Memetic” BB algorithms are able to improve the performance
of pure BB algorithms signi�cantly. It is worth pointing out
that, while the results presented in this paper are consistent with
previous �ndings in the literature, our results have been obtained
through a much more comprehensive and solid experimental
procedure.
This is a preview version of paper [1] (see page9 for the
reference). It is posted here for your personal use and not for
redistribution. The �nal publication and de�nite version is
available from IEEE (who hold the copyright) at
http://www.ieee.org/ . See also
http://dx.doi.org/10.1109/CIPLS.2014.7007174 .

I. I NTRODUCTION

The Traveling Salesman Problem (TSP) [2–4] is the most
well-known combinatorial optimization problem. It can be
described as follows: Given aren cities, indexed from1
to n, and the distancesD i;j 2 N (with i; j 2 1; 2; : : : n)
between them. A salesperson aims to visit each city exactly
once and then return back to his original location. In which
order should this salesperson visit the cities to minimize the

total travel distance? A candidate solution to a TSP is a tour
t = ( t1; t2; : : : ; tn ), and a permutation of the cities to visit.
The objective functionf , subject to minimization, computes
the total round trip distancef (t) = D t n ;t 1 +

P n � 1
i =1 D t i ;t i +1

of such a tour.
This optimization version of the TSP is NP-hard [4], and

the worst-case runtime complexity of any existing exact TSP
solver is exponential [5]. In order to obtain close to optimal
solutions within feasible time, various approaches have been
proposed, ranging from metaheuristics such as Evolutionary
Algorithms (EAs) [6], Ant Colony Optimization (ACO) [7],
and Estimation of Distribution Algorithms (EDAs) [8], to
Local Search (LS) [9], Branch and Bound (BB) [10] and
cutting plane algorithms [11]. The problem is well-known,
easy-to-understand, and standard benchmarks with known
solutions (like theTSPLib [12]) are available. This makes
the TSP an ideal option for investigating and comparing the
performance of new algorithms. To date, however, not many
comparisons of members of different algorithm families have
been conducted (notable exceptions are [13, 14]). Moreover,
the experimental approaches and result comparisons in the
literature are often limited to simple key statistics about their
�nal results, ignoring the progress of algorithms over time.

In our recent work [15], a more rigorous experimental pro-
cedure has been introduced. Through an open source software
framework, theTSP Suite, we have been able to conduct com-
prehensive experimental analysis and show that Evolutionary
Computation (EC) methods such as EAs and EDAs do not
perform well on the TSP when compared to LS algorithms.
Yet, we found that hybridization of EC methods with LS
algorithms can lead to greatly enhanced performances. In this
paper, we use the same software framework to answer two
research questions: (1)How does the BB algorithm from [10],
which was created �ve decades ago, from a time where 40-city
problems were considered “large-scale”, compare to contem-
porary metaheuristics?and (2)Would hybridizing BB with LS



have similar positive effects like those observed through the
EC methods?”.

The contributions of this paper can be summarized as
follows:

1) An in-depth performance analysis of the BB algorithm
over timeon 83 (smaller instances) of the 110 symmet-
ric TSPLib benchmark instances, according to several
different time measures such as function evaluations
(FEs), normalized CPU times and different performance
statistics.

2) A detailed comparison of the BB algorithm to modern
metaheuristics such as state-of-the-art EAs, ACO, and LS
algorithms.

3) The introduction of new hybrid forms of the investigated
BB algorithm based on the same hybridization scheme
used in [15].

4) A detailed comparison of the new hybrid BB algorithms
to hybrid variants of the above mentioned EC approaches.

5) The implementation of all the tested
algorithms will be provided online at
http://www.logisticPlanning.org/tsp/
as part of the open source frameworkTSP Suite.

6) The measured performance data will be provided online
too, contributing to probably the largest collection of
benchmark data on TSP solvers (with log �les of already
more than 20GB in size, obtained from about 200 algo-
rithm setups).

The remainder of this paper is organized as follows. In the
next section, we discuss related work on automated experi-
mentation (Section II-A) and on solving TSPs (Section II-B)
respectively. We then describe the BB algorithm as well as its
new hybrid variants in Section III. The conducted experiments
are discussed in Section IV. Section V ends the paper with
conclusions and plans for future work.

II. RELATED WORK

A. Related Work on Experimentation

In the �eld of metaheuristic optimization, experimentation is
the most important tool to assess and compare the performance
of different algorithms. Even though this has been the case for
a long time, the experimentation approaches adopted in most
of the previous studies have relied mainly on the most basic
statistics, some of which are even �awed. The reason is that
proper experimentation itself is actually a cumbersome, time-
demanding and complex process.

The COmparing Continuous Optimisers(COCO) [16] sys-
tem for numerical optimization, used in the Black-Box Opti-
mization Benchmarking (BBOB) workshops, is one of the �rst
approaches aiming to reduce the workload of an experimenter
by automatizing most of the steps involved in an experimen-
tation process. Its evaluation procedure generates statically
structured papers that contain diagrams with runtime behavior
information. The necessary data is automatically collected
from executed experiments.

UBCSAT [17] is an experimental framework for satis�abil-
ity problems. It focuses on a speci�c family of algorithms:

the stochastic local search [18]. In COCO, the objective
function will automatically gather log data before returning
its result to the algorithm. In UBCSAT, this is done through a
trigger architecture, which can also compute complex statistics
online and provide them to the running algorithm. COCO
and UBCSAT both explore algorithm behavior over runtime
instead of just comparing end results.

The TSP Suite[15] takes the idea one step further. First,
it provides software development support such as unit test-
ing. Second, theTSP Suitewill take care of parallelization
or distribution of workload on a multi-processor system or
cluster. It does not require any additional support or third-party
software and the experimenter can implement their algorithm
in a normal, non-parallelized way. Third, like in COCO, an
algorithm performance report can be created automatically.
The difference is that it includes an in-depth description
of the experimental procedure and presents several different
statistical analyses, such as statistical tests comparing the mea-
sured runtimes and end results, automated comparisons of the
estimated running time (ERT) [16] curves over goal objective
values or problem scales and automated comparisons of em-
pirical cumulative distribution functions (ECDFs) [16, 17, 19].
Each of these statistics results in algorithm rankings, which are
later aggregated into a global ranking list. The global ranking
will provide some insights on the general performance of a
TSP solver.

To the best of our knowledge, theTSP Suiteis the �rst
framework addressing the issue of runtime measures. Tra-
ditionally, runtime is either measured in CPU seconds or
the number of generated candidate solutions (i.e., objective
“function evaluations”, or FEs in short). The problem with
using CPU time is that results obtained on different machines
are inherently incomparable, while the number of generated
candidate solutions gives no information about the actual
runtime of an algorithm, since 1 FE may have different com-
putational complexities in different algorithms. For instance,
in a LS algorithm or a mutation operator in an EA, a new
solution may be obtained from an existing tour of known
length by swapping two cities, which has the complexity of
O(1). In ACO, the creation of one new solution has time
complexityO(n2). In theTSP Suite, these shortcomings have
been addressed by introducing two new time measures: the
normalized runtime (NT) and the number of times the distance
matrix D is accessed (distance evaluations, DEs). The NT
is the CPU time divided by a machine and problem in-
stance speci�c performance factor, thus rendering time results
(somewhat) machine independent. The DEs take into account
the different complexities of 1 FE in different algorithms.
Statistical analyses through theTSP Suiteare all conducted
three times, based on the FE, NT, and DE respectively. The
algorithm rankings created therefore represent a more balanced
and fair perspective on an algorithm's performance.

B. Related Work on the TSP

The �rst BB approach for solving the TSP was published
by Little et al. [10] in 1963. This algorithm is the basis of



our study. It is already 50 years old, and many improvements
have been made since then. For example, the ef�cient BB
algorithms designed by Zhang [20, 21] have been able to
provide good solutions. A myriad of other ideas have also
been tested. More details of the BB algorithm will be provided
in Section III. In this section, we focus on related work
using algorithms to which we would like to compare the BB
algorithm to, which include LS, EC and hybrid algorithms.

1) Solving TSPs with LS:LS algorithms maintain a single
solution and try to improve it iteratively by investigating its
“neighborhood”, i.e., the set of solutions that can be reached
by applying a single modi�cation to it. Examples of operators
that can do the job include those that reverse a sub-sequence
of a tour, rotate a sub-sequence one step to the left or right,
or a swap move simply exchanging two nodes [15].

One of the most successful general LS approaches is
Variable Neighborhood Search (VNS) [22]. VNS investigates
a set of neighborhoods by searching the �rst neighborhood
until no further improvement is possible, then trying the
second neighborhood, the third, and so on. As soon as an
improvement is found, it reverts back to the �rst neighborhood.
In [15], a Random Neighborhood Search (RNS) algorithm that
randomly picks a different neighborhood in each step as well
as a Multi-Neighborhood Search (MNS) algorithm that scans
all neighborhoods of a given solution and collects multiple
improving moves at once were tested and found to have
produced good performances. In this paper, we apply these
three algorithms (i.e., VNS, RNS and MNS) with restarts,
exactly as de�ned in [15].

2) Solving TSPs with EC:EAs are the most well-known EC
approaches [23]. They manage a set (population) of solutions
by iteratively selecting its best members and creating new so-
lutions by mutation and crossover operations. Mutation means
to randomly generate a solution out of the neighborhood of
a parent solution. Crossover means to combine two solutions.
Several different mutation and crossover operators of EAs for
the TSP have been proposed [24]. In this paper, we investigate
an EA that uses the same four neighborhoods introduced in
[15] for mutation. We apply Edge Crossover [6], which tries
to create a new solution by using edges occurring in either of
its two parents and is considered to have performed well [24].

The Population-based ACO (PACO) [25], another member
of the EC family, is a variant of the ACO algorithm that
maintains a set (population) ofk solutions. The edges present
in those solutions de�ne the pheromones. In each iteration,m
solutions are generated as in standard ACO and the best of
them replaces the “oldest” solution in the population. PACO
is known to be amongst the best ACO approaches [25, 26]
and was the best tested pure EC method in [15] for the TSP.

3) Solving TSPs with Hybrid Algorithms:EC methods
can be hybridized with LS algorithms for improving their
performances: Memetic Algorithms (MAs) [27] are EAs where
a LS algorithm is applied to every new solution created. MAs
are known to have performed well on the TSP [15, 28]. Other
metaheuristics (like PACO) can be hybridized as well. In [15],
it was shown that LS outperforms pure EC methods, but

hybrid EC-LS algorithms are the best. While this is common
knowledge in the �eld of EC, only limited attempts, such
as [29], have been made to hybridize BB with LS. To the
best of our knowledge, the new hybrid BB introduced in this
paper is the �rst such approach for the TSP.

III. M ETHODS

A. BB in General

A BB approach for the TSP initially considers all possible
tours as potential solutions, i.e., a setT A of size(n � 1)!, in
the asymmetric case. A tour can be created either randomly or
by using a heuristic. The best tourt � known to the algorithm is
used as the starting solution. In thebranchstep, according to
some criterion' , a setT (initially T A ) of solutions is divided
into two subsetsT 1 andT 2. A lower bound` of the objective
function for each of these sets is calculated. Clearly, a setT i

can only contain a better solution thant � if `(T i ) < f (t � ).
Only those sets that may potentially contain better solutions
are considered in the further course of the algorithm.

B. BB by Little et al.

The BB algorithm by Little et al. [10] was designed for
solving asymmetric TSPs. In their algorithm, each setT of
solutions is de�ned by a corresponding setE of directededges
that are allowed as part of the tourst 2 T , i.e.,E = � f (i; j ) :
i; j 2 1: : : n ^ i 6= j g.

Branching is done by choosing an edgee� , which must
be included in the solutions of one subset and excluded from
those in the other subset. The branching criterion' maps each
edge to a natural number. For a given edge(i; j ), ' (i; j ) equals
to the sum of the distances of the shortest allowed edge from
nodei and the shortest allowed edge to nodej . In the branch
step,' is evaluated for each edgee 2 E and the edgee� =
(k; l ) with the maximal' -value is selected. The current set of
allowed candidate solutionsT is then divided into two subsets,
T 1 and T 2. All tours in T 1 must containe� while those in
T 2 must not. When branching toT 1, a new edge setE1 is
created asE1 = E n f (i; l ) : i 6= kg n f(k; j ) : j 6= lg, i.e.,
by removing all edges either starting in cityk or ending in
city l . If branching toT 2, the corresponding set of allowed
edgesE2 is created asE2 = E n f e� g. The subset with the
best lower bound̀ is investigated �rst, while the other subset
enters a queue. Hoẁ is designed can be found in [10].

This process is recursively applied, until it arrives at sets
containing only a single solution. If such a solution is better
than t � , t � is updated. Then, the queue of tour sets awaiting
investigation is pruned by removing all sets with a lower
bound` greater than or equal tof (t � ). From the remaining
candidates, the one with the smallest corresponding lower
bound is extracted and used for the next branching step. We
will refer to this basic algorithm asBB from here on.

Given enough runtime,BB will always return the globally
optimal (shortest possible) tour. However, in a worst case
scenario, the branches may form a full binary tree with depth
of at leastn. This leads to a worst-case time and memory
requirement in
(2 n ).



Like all common metaheuristics, BB algorithms are anytime
algorithms [30], i.e., algorithms that can provide an approx-
imate solution at any point during their course [21]. The
quality of the approximation should improve over runtime.
The difference between BB and other EC and LS methods
is that BB can guarantee in �nding the optimum solution
eventually (unless terminated earlier). In our study, we thus
do not consider only the end result (in this case, success or
premature termination), but the progress an algorithm makes
over runtime.

C. New Hybrid BB

In Section II-B1, we introduced three LS algorithms: VNS,
RNS, and MNS. The hybrid PACO and the hybrid EA (i.e.,
MA) setups in [15] re�ne every constructed candidate solution
by applying one of these three. This straightforward scheme
can also be used to hybridizeBB: whenever the algorithm
has branched to a setT containing onlyjT j = 1 solution, this
solution is passed to the selected LS algorithm, which proceeds
until it arrives at a (different) local optimum. The selected LS
algorithm is also applied to the initial solution in order to
provide a tight upper bound. We create three hybrid variants
of BB by combining it with VNS, RNS, and MNS, which we
abbreviate asBBVNS, BBRNS, andBBMNSrespectively.

These hybrids retain the exact property ofBB, but they have
a higher worst-case time complexity, since each “leaf” of the
search tree is additionally processed by LS whereeach search
step has (at least) quadratic complexity, leading to a worst-
case time complexity of
( n2 � 2n ). The actual worst-case
complexity could be higher than this lower bound, since the
LS algorithm would usually perform several more steps. A
detailed theoretical analysis of the algorithm's complexity is
out of the scope of this work. A potential bene�t of the LS
is that it may be able to provide tighter upper boundsf (t � ),
which may allow the algorithm to skip more branches earlier,
and thus reduce the average runtime. In this paper, we aim
to investigate whether this is true. It is worth noting that the
aforementioned complexities would come into play only if the
algorithm is granted enough runtime to complete its search
steps. In our experiments, we apply it as an anytime algorithm
with a limited computational budget.

An alternative way to decrease the (initial) upper bound
without tangibly affecting the worst-case time complexity is
to not obtain it from a random solution but from a solution cre-
ated by a simple constructive heuristic. We tested this approach
with the Double Minimum Spanning Tree (name pre�xM) and
Savings heuristics (name pre�xS) [2]. These heuristics have
the time complexity ofO(n2), which is negligible compared
to O(2n ). We combine either of these heuristics with any of
the previous setups and signify this with the corresponding
name pre�x, e.g.,SBBis BBinitialized with Savings,MBBMNS
is a MNShybrid of the BB algorithm obtaining its initial
upper bound from a solution created by the Double Minimum
Spanning Tree heuristic, and so on. All in all, this leads to
4� 3 = 12 BB setups.

IV. EXPERIMENTS AND RESULTS

We conducted experiments on the symmetricTSPLibbench-
mark cases for the 12BB setups discussed in the previous sec-
tion using theTSP Suiteintroduced before. In our experiments,
30 runs were performed for each benchmark case. Initial
tests showed that the memory requirement of the algorithm
quickly increases with the problem scale, but seemingly not
exponentially as it would be the worst case scenario. We
could only obtain results for the 83 smaller problem instances
up to 3795 cities and therefore only consider these in the
evaluation (which are still about 100 times more than the
“largest-scale” original experiment [10]).

The comparison data for the pure LS and EC methods as
well as their hybrids are taken from [15], in which detailed
descriptions of the corresponding experiments can be found.
In particular, we compared the algorithm performance ofBB
with the two best setups of pure EA and ACO found in that
paper. These areEA128+256e , an (128 + 256) EA with
truncation selection and Edge Crossover, andPACO3,25, a
population-based ACO with population size 3 and sample
size 25. From these two con�gurations, the best variants
having initial populations seeded with solutions obtained from
constructive heuristics, referred to ashEA128+256e and
hPACO3,25 respectively, are derived.

Finally, we also comparedBB with the two best seeded
EA and ACO setups hybridized with MNS and RNS ac-
cording to [15]. For the EA, these arehMA16+64mnse, a
(16 + 64) EA with Edge Crossover hybridized with MNS,
andhMA2+8rnss , a (2+8) EA with Savings Crossover [15]
hybridized with RNS. For PACO, the best hybrid setups with
different LS algorithms arehPACO3,10mns, with population
size 3, sample size 10, and MNS, as well ashPACO3,10rns ,
which uses RNS instead. Furthermore, we compared the
performance of theBB algorithms with the best setups of the
pure LS algorithms (MNS, RNS1, VNS1) and their best seeded
setups (MNSm, RNSbm, andVNSbm, all of which were seeded
with the Double Minimum Spanning Tree heuristic).

Different benchmark cases have different globally optimal
tour lengthsf ?. To ease the comparison and understanding of
results, we considered the algorithm's progress in terms of the
relative errorF = ( f ( t � ) � f ? )=f ? instead of the best discovered
objective valuef (t � ). If a run reachesF = 0 , it has discovered
the global optimum.F = 1 means the best currently known
tour t � is twice as long as the optimal one.

Similarly, we introduced relative “goal errors”, denoted as
Ft , to compute several statistics: the ERT [16], for instance,
estimates the runtime needed to reach a solution withF � Ft ,
while the ECDF [16, 17, 19] estimates the probability to which
a run obtains a solution withF � Ft within a given time
budget.

A. Pure Algorithm Performance

Let us �rst explore the performance of the pureBB al-
gorithm and compare it with the pure EC algorithms ini-
tialized with different heuristics. We found thatBB and its
heuristically-initialized derivatives receive the worst ranking,



aggregated from a variety of statistics. The heuristically ini-
tialized SBB andMBBoutperformBB.

We illustrate two ECDFs of these setups in Figure 1. The
ECDF of BB in Figure 1a, based on the normalized CPU
runtime measure NT, increases slowly and never reaches 0.5
for Ft = 0 :1. In other words, even a 10% margin cannot
be reached in more than half of the runs under the given
computational budget. The ECDF curves ofBB, MBBandSBB
all increase slowly and approach each other as time increases.
If we decreaseFt (not illustrated), the ECDF value decreases
rapidly as well. If we measure time in terms of FEs (Figure 1c)
instead of (normalized) CPU seconds, we see that the tested
BB algorithms can only create relatively few solutions within
the granted computational budget and thus, the ECDF stops
increasing early.

These observations are based on all the instances with the
sizen up to 3795. The �ndings are not surprising, as problem
scales above 40 were more or less out of reach byBB when
it was designed. In terms of normalized CPU time (NT),BB
can �nd solutions of instances withn = 32 and below quite
well, and the ECDF increases quickly. The ERT in terms of
DEs and NT is low in this problem class. When the problem
scalen becomes bigger,BB �nds fewer solutions.

The TSP Suiteprovides separate diagrams for the TSP
instances grouped by the number of citiesn. In other words,
we can analyze the relationship between the performance of
BB and the problem scale. In the graphs presented in this
paper, lines with the same color represent different algorithms
belonging to the same category (e.g., MNS and VNS belong
to the LS group and thus they are illustrated with the same
color).

From Figures 2a and 2b, we see that theBB algorithm can
�nd the optimal solutions for instances withn between 16 and
31 quite rapidly, and for32 � n < 63, although not as good as
LS algorithms, it still can �nd solutions withFt � 0:05. As the
problem scale increases, however, its performance decreases.

While the NT is related to the actual consumed runtime,
we can also measure the progress of an algorithm relative to
the number of candidate solutions it has constructed, i.e., in
FEs. In Figures 2c and 2d, we present the ECDF in terms
of FEs, based on the same groups of small-scale instances as
Figures 2a and 2b illustrated. TheBB algorithm again shows
good performance forn � 31. We can see from Figure 2c
that it can reach the optima with few FEs and outperform the
other algorithms exceptMBB, SBB, SBBMNS, SBBVNSand
SBBRNS. As the instance scale gets larger, theBB algorithm
can only perform a few FEs until the maximum runtime is
exhausted, and it manages to �nd only solutions with a longer
tour length.

In Figure 3, we plot the ERT in terms of the normalized
runtime NT (y-axis) to achieve given goal errorsFt (x-axis).
The trends for the ERT are similar for DEs, FEs, and NT.
BB and its heuristically-initialized derivatives take longer to
�nd good solutions compared to the other algorithms. This
becomes, again, even more obvious when we look at larger
instances. For problems withn < 256, BB can reachF �

0:15. The smallern is, the smaller theFt valueBB can reach
within the given computational budget.

We also tested two initialized variants ofBB: MBBandSBB.
Initialization does improve the performance ofBB a little,
at least during the early stage of the search, by giving the
algorithm a better initial upper bound and initialt � . It does
not, however, increase the speed of improving the existing
solutions. The changes of gradients in the performance curves
of BB, MBB, andSBB are almost identical.

From Figure 1, we can clearly see that theBB algorithms
are initially better thanEA128+256e , but EA128+256e
later outperforms them. The heuristically-initialized EA,
hEA128+256e , is better than theBB group from the start.
Moving on to Figure 2, we can see that pure EC methods
behave differently when comparing the improvement ofF
over NT. For instances with8 � n < 32, the BB algorithms
outperform the PACO algorithms all the time and also outper-
form EA128+256e most of the time, but are outcompeted by
hEA128+256e completely. For instances with32 � n < 64,
the BB algorithms perform the worst. Again, the larger the
scalen is, the worse the set of testedBB methods performs
in comparison with the tested EC methods.

The tested LS setupsMNS, RNS1andVNS1are much better
than theBB algorithms and the pure EC methods.

B. Hybrid Algorithm Performance

Next, we investigated theBB variants hybridized withMNS
(called BBMNS), VNS (BBVNS), and RNS(BBRNS). Each of
these three hybrids was tested with and without heuristic
initialization.

The ECDF over all tested benchmark instances has a similar
shape for both DEs and NT, and we plot it forFt = 0 :01 in
Figure 1b. From the �gure, we can visually classify all the
curves into two main categories. The �rst category contains
the BB variants, of whichMBBMNS(highlighted in the �gure)
performs the best. The other category contains the hybrid EC
and LS algorithms, of whichhPACO3,10mns (also high-
lighted) is the best algorithm. The hybrid EC methods perform
signi�cantly better than the pure EC and hybridBBalgorithms.
They have achieved better ECDF values eventually and their
ECDF also increases more rapidly. The ECDF value of the
tested hybridBB algorithms fails to reach 0.35 forFt = 0 :01
within the granted computational budget. The ECDF of the
hybrid EC and LS algorithms, however, eventually exceeds
0.7. This suggests that there is a huge performance gap
between the hybridBB variants and hybrid EC algorithms or
LS algorithms. The hybridBB variants are better than the
pure EA (EA128+256e ) but worse than the heuristically-
initialized EA (hEA128+256e ). They were better than the
pure and heuristically initialized variants of PACO for most
of the given time, but are eventually outperformed by them.

The ERT �gures in terms of DEs and NT for a givenFt also
share similar shapes with those in Figure 3. Here, we observe
three visually distinguishable algorithm classes: the pure and
initialized BB algorithms belong to the worst class, their
hybrid versions and pure EC algorithms are in a better class,
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(c) ECDF forFt = 0 :1 and FEs

Fig. 1: We plot the ECDFs for goal errorFt = 0 :1, i.e., the fraction of runs that have discovered a tour that is not more
than 10% longer than the global optimum andFt = 0 :01 over the two time measures NT and FE (scaled byn). The x-axes
are logarithmically scaled. In these graphs (in fact all the graphs presented in this paper), lines with the same color denote
algorithm variants within the same category.
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(b) Progress over NT for all instances with32 � n < 64
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(d) Progress over FEs/n for all instances with32 � n < 64

Fig. 2: Progress diagrams showing how the relative errorF , i.e., the fraction the best known tourt � is longer than the optimal
one, improves over runtime. The diagrams are aggregated over smaller-scale subsets of the investigated TSP instances. Their
x-axes hold the logarithmically scaled runtimes and they-axes areF .
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Fig. 3: (log-scaled) ERT in terms of NT overFt for all tested
instances.

and the hybrid EC algorithms as well as the LS algorithms
end up in the best category. The hybridBB algorithm group
takes longer to reach a given goal errorFt . An interesting
observation is that the last two classes behave similarly when
Ft is larger than 0.1, but asFt enters the interval between 0.1
and 0.05 (representing better solutions), their performances
start to diverge. The speed at which the hybridBB variants
�nd better solutions then declines dramatically. The hybrid EC
algorithms and the LS algorithms also suffer a great decline
in the speed of �nding better solutions at this stage, but not
nearly as much as the hybridBB group.

From Figures 2a and 2b, we see that all the tested algorithms
can acquire good results on the smallest instances with8 �
n < 63, although both the EC and LS methods have obtained
slightly better results within the given computational budget.

A detailed analysis of the �gures shows that all the tested
algorithms are quick to �nd long tours, i.e., to reach higher
goal errorsFt . However, the hybridBB algorithms take much
longer than the hybrid EC algorithms (or LS algorithms) to
locate good tours.

One reason for this observation could be that, although we
have introduced hybridization intoBB the same way in which
it is introduced in EAs and PACO, its “utilization” is very
different. An MA (hybrid EA) uses the results of the LS as
input for the search operations in the next generation and
ACO uses it to update its pheromone matrix, i.e., the way
new solutions are generated. The hybridBB only uses it to
update the upper boundf (t � ) for the optimum and to update
its variable t � holding the best known solution. It does not

use hybridization to generate new solutions. In other words, it
cannot reap as much bene�t from the LS as the EC methods
do.

If we look at Figure 2a as well as �gures on other scales,
we notice that the performance of the compared algorithms
differs most signi�cantly when the instance sizen is between
32 and 512. Within this range, hybridBB algorithms with
heuristic initialization can �nd good solutions with anFb

around 0.05 (0.1 ifn is bigger than 256) in an early stage,
although the results are still not better than the heuristically-
initialized EC methods. The entireBB algorithm group fails
to improve its solutions continuously compared to hybrid EC
algorithms and LS algorithms. All in all, for small instance
sizes, all the algorithms have good performance. For medium
size instances, the hybrid EC algorithms and LS offer better
performance. For relatively large problems, however, none of
the tested algorithms performs well.

We found that initialization does not alter the �nal results
much, but will it in�uence the process of �nding the solutions?
Figures 2c and 2d along with the diagrams on different
instance scales provide a positive answer to this question.
To reach some �xed goal errorFt , for algorithms from
the hybrid BB family and the LS algorithms, the initialized
variants tend to have good starting solutions and take less
FEs. The exceptions arePACO3,25 and hPACO3,25, for
which initialization neither provides any obvious enhancement
(compared to other algorithms) on the starting solutions nor
does it reduce the consumed FEs signi�cantly. The reason
may be that the way PACO creates a solution when its
pheromone matrix is empty (the initial state) is similar to
how a constructive heuristic works. In general, when the
instance sizen increases, the initial solutions generated by
heuristic initialization become worse but are still better than
their random counterparts.

C. Performance Classes

Based on all the above analyses, we can classify
the tested algorithms according to their behaviors into
four groups, which are, in descending order according
to their performance: hybrid EC algorithms, LS algo-
rithms, the hybridBB, and pureBB. The globally aggre-
gated ranking, over all the performance measures, computed
by the TSP Suiteis: hPACO3,10mns, hMA16,64mnse ,
hPACO3,10rns , MNSm, MNS, hMA2+8rnss , RNSbm,
RNS1, VNSbm, VNS1, hEA128+256e , MBBMNS, SBBRNS,
hPACO3,25, MBBRNS, PACO3,25, MBBVNS, SBBMNS,
RBBMNS, SBBVNS, RBBRNS, RBBVNS, EA128+256e , SBB,
MBBandBB.

V. CONCLUSIONS ANDFUTURE WORK

Our experiments have led us to four major conclusions:
1. The traditionalBB algorithm still works well on small-

scale TSP instances (for which it was designed) compared to
current methods, but it does not perform well on medium or
larger scale instances. This is true for its hybrid variants too.



2. Hybridization is able to improve the performance ofBB
considerably.

3. We are able to classify TSP solvers into four groups
according to their runtime behavior and con�rm that hybrid
algorithms are better than their corresponding pure algorithms.

4. Heuristically-initialized algorithms normally have good
starting solutions and take less FEs to reach the sameFt and
the hybrid EC algorithms are better than our new hybridBB
algorithms.

Future work will involve implementing the modern variants
of BB by Zhang [20, 21] and hybridizing them with LS. We
will also investigate the use of Lin-Kernighan heuristic [31],
one of the best known metaheuristic strategies [31] for the
TSP, for benchmarking purposes.
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