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Abstract—Benchmarking is one of the most important ways total travel distance? A candidate solution to a TSP is a tour
to investigate the performance of metaheuristic optimization t = (t4;t,;:::;t,), and a permutation of the cities to visit.

algorithms. Yet, most experimental algorithm evaluations in the The objective functiorf , subject to minimizgtion computes
literature limit themselves to simple statistics for comparing the total d trio di t, &(t) = D £ N ’1D
end results. Furthermore, comparisons between algorithms from e total round trip distancé(t) = tnity i=1 Mtistia

different “families” are rare. In this study, we use the TSP Of such a tour.
Suite — an open source software framework — to investigate  This optimization version of the TSP is NP-hard [4], and
the performance of the Branch and Bound (BB) algorithm for  the worst-case runtime complexity of any existing exact TSP

the Traveling Salesman Problem (TSP). We compare this BB gq|yer js exponential [5]. In order to obtain close to optimal
algorithm to an Evolutionary Algorithm (EA), an Ant Colony uti 'Ft)h' f 'b[l ].t' . hes h P b
Optimization (ACO) approach, as well as three different Local solutions within feasible time, various approaches have been

Search (LS) algorithms. Our comparisons are based on a variety Proposed, ranging from metaheuristics such as Evolutionary
of different performance measures and statistics computed over Algorithms (EAs) [6], Ant Colony Optimization (ACO) [7],

the entire optimization process. The experimental results show and Estimation of Distribution Algorithms (EDAS) [8], to
that the BB algorithm performs well on very small TSP instances, Local Search (LS) [9], Branch and Bound (BB) [10] and
but is not a good choice for any medium to large-scale problem . Y .

instances. Subsequently, we investigate whether hybridizing BB cutting plane algorithms [11]. The problem is WeII'-known,
with LS would give rise to similar positive results like the hybrid ~€asy-to-understand, and standard benchmarks with known
versions of EA and ACO have. This turns out to be true — the solutions (like theTSPLib [12]) are available. This makes
“Memetic” BB algorithms are able to improve the performance the TSP an ideal option for investigating and comparing the
of pure BB algorithms signi cantly. It is worth pointing out — herfarmance of new algorithms. To date, however, not many

that, while the results presented in this paper are consistent with - f b f diff t algorithm families h
previous ndings in the literature, our results have been obtained comparisons or members of difierent aigorithm families have

through a much more comprehensive and solid experimental Peen conducted (notable exceptions are [13, 14]). Moreover,

procedure. the experimental approaches and result comparisons in the
This is a preview version of papet][(see page for the literature are often limited to simple key statistics about their
reference). It is posted here for your personal use and not foal results, ignoring the progress of algorithms over time.
redistribution. The nal publication and de nite version is In our recent work [15], a more rigorous experimental pro-
available from IEEE (who hold the copyright) at cedure has been introduced. Through an open source software
http://lwww.ieee.org/ . See also framework, theTSP Suitewe have been able to conduct com-
http://dx.doi.org/10.1109/CIPLS.2014.7007174 prehensive experimental analysis and show that Evolutionary

Computation (EC) methods such as EAs and EDAs do not
. INTRODUCTION perform well on the TSP when compared to LS algorithms.
The Traveling Salesman Problem (TSP) [2—-4] is the mo¥et, we found that hybridization of EC methods with LS
well-known combinatorial optimization problem. It can belgorithms can lead to greatly enhanced performances. In this
described as follows: Given are cities, indexed froml paper, we use the same software framework to answer two
to n, and the distance®;; 2 N (with i;j 2 1;2;:::n) research questions: (How does the BB algorithm from [10],
between them. A salesperson aims to visit each city exactihich was created ve decades ago, from a time where 40-city
once and then return back to his original location. In whicproblems were considered “large-scale”, compare to contem-
order should this salesperson visit the cities to minimize tip®rary metaheuristicsand (2)Would hybridizing BB with LS



have similar positive effects like those observed through ttlee stochastic local search [18]. In COCO, the objective

EC methods?”’ function will automatically gather log data before returning
The contributions of this paper can be summarized é&s result to the algorithm. In UBCSAT, this is done through a
follows: trigger architecture, which can also compute complex statistics

1) An in-depth performance analysis of the BB algorithrenline and provide them to the running algorithm. COCO
over timeon 83 (smaller instances) of the 110 symme&and UBCSAT both explore algorithm behavior over runtime
ric TSPLib benchmark instances, according to sever#istead of just comparing end results.
different time measures such as function evaluationsThe TSP Suitg/15] takes the idea one step further. First,
(FEs), normalized CPU times and different performandt provides software development support such as unit test-
statistics. ing. Second, theTSP Suitewill take care of parallelization

2) A detailed comparison of the BB algorithm to moderor distribution of workload on a multi-processor system or
metaheuristics such as state-of-the-art EAs, ACO, and c#ister. It does not require any additional support or third-party
algorithms. software and the experimenter can implement their algorithm

3) The introduction of new hybrid forms of the investigateéh a normal, non-parallelized way. Third, like in COCO, an
BB algorithm based on the same hybridization schensdgorithm performance report can be created automatically.
used in [15]. The difference is that it includes an in-depth description

4) A detailed comparison of the new hybrid BB algorithmef the experimental procedure and presents several different
to hybrid variants of the above mentioned EC approachesatistical analyses, such as statistical tests comparing the mea-

5) The implementation of all the testedsured runtimes and end results, automated comparisons of the
algorithms will be provided online at estimated running time (ERT) [16] curves over goal objective
http://lwww.logisticPlanning.org/tsp/ values or problem scales and automated comparisons of em-
as part of the open source framewdrBP Suite pirical cumulative distribution functions (ECDFs) [16, 17, 19].

6) The measured performance data will be provided onlifeach of these statistics results in algorithm rankings, which are
too, contributing to probably the largest collection ofater aggregated into a global ranking list. The global ranking
benchmark data on TSP solvers (with log les of alreadwill provide some insights on the general performance of a
more than 20GB in size, obtained from about 200 algd-SP solver.
rithm setups). To the best of our knowledge, thESP Suiteis the rst

The remainder of this paper is organized as follows. In tifeamework addressing the issue of runtime measures. Tra-

next section, we discuss related work on automated expefitionally, runtime is either measured in CPU seconds or
mentation (Section 1I-A) and on solving TSPs (Section II-Bhe number of generated candidate solutions (i.e., objective
respectively. We then describe the BB algorithm as well as i§inction evaluations”, or FEs in short). The problem with
new hybrid variants in Section 1. The conducted experimentising CPU time is that results obtained on different machines
are discussed in Section IV. Section V ends the paper wiie inherently incomparable, while the number of generated
conclusions and plans for future work. candidate solutions gives no information about the actual
runtime of an algorithm, since 1 FE may have different com-
Il. RELATED WORK . L LT . .
putational complexities in different algorithms. For instance,
A. Related Work on Experimentation in a LS algorithm or a mutation operator in an EA, a new
In the eld of metaheuristic optimization, experimentation isolution may be obtained from an existing tour of known
the most important tool to assess and compare the performatecgth by swapping two cities, which has the complexity of
of different algorithms. Even though this has been the case f9(1). In ACO, the creation of one new solution has time
a long time, the experimentation approaches adopted in mosmplexityO(n?). In the TSP Suitethese shortcomings have
of the previous studies have relied mainly on the most basieen addressed by introducing two new time measures: the
statistics, some of which are even awed. The reason is thadrmalized runtime (NT) and the number of times the distance
proper experimentation itself is actually a cumbersome, timgratrix D is accessed (distance evaluations, DEs). The NT
demanding and complex process. is the CPU time divided by a machine and problem in-
The COmparing Continuous Optimise(€0COQO) [16] sys- stance speci ¢ performance factor, thus rendering time results
tem for numerical optimization, used in the Black-Box Optiisomewhat) machine independent. The DEs take into account
mization Benchmarking (BBOB) workshops, is one of the rsthe different complexities of 1 FE in different algorithms.
approaches aiming to reduce the workload of an experimen&atistical analyses through tieSP Suiteare all conducted
by automatizing most of the steps involved in an experimethiree times, based on the FE, NT, and DE respectively. The
tation process. Its evaluation procedure generates staticallgorithm rankings created therefore represent a more balanced
structured papers that contain diagrams with runtime behavaond fair perspective on an algorithm's performance.

information. The necessary data is automatically collected
from executed experiments. B. Related Work on the TSP

UBCSAT [17] is an experimental framework for satis abil- The rst BB approach for solving the TSP was published
ity problems. It focuses on a specic family of algorithmsby Little et al. [10] in 1963. This algorithm is the basis of



our study. It is already 50 years old, and many improvemerntgbrid EC-LS algorithms are the best. While this is common
have been made since then. For example, the ef cient B&iowledge in the eld of EC, only limited attempts, such
algorithms designed by Zhang [20, 21] have been able a8 [29], have been made to hybridize BB with LS. To the
provide good solutions. A myriad of other ideas have aldmest of our knowledge, the new hybrid BB introduced in this
been tested. More details of the BB algorithm will be providegaper is the rst such approach for the TSP.
in Section Ill. In this section, we focus on related work
using algorithms to which we would like to compare the BB
algorithm to, which include LS, EC and hybrid algorithms. A. BB in General

1) Solving TSPs with LSLS algorithms maintain a single A BB approach for the TSP initially considers all possible
solution and try to improve it iteratively by investigating itsours as potential solutions, i.e., a et of size(n 1)!, in
“neighborhood”, i.e., the set of solutions that can be reachgf asymmetric case. A tour can be created either randomly or
by applying a single modi cation to it. Examples of operatorgy using a heuristic. The best tourknown to the algorithm is
that can do the job include those that reverse a sub-sequefi§éd as the starting solution. In theanchstep, according to
of a tour, rotate a sub-sequence one step to the left or rigéme criterior , a setT (initially T ) of solutions is divided
or a swap move simply exchanging two nodes [15]. into two subsetd 1 andT ,. A lower bound™ of the objective

One of the most successful general LS approachesfigction for each of these sets is calculated. Clearly, & set
Variable Neighborhood Search (VNS) [22]. VNS investigatesan only contain a better solution thanif ~(T;) < f (t ).

a set of neighborhoods by searching the rst neighborho@hly those sets that may potentially contain better solutions

until no further improvement is possible, then trying there considered in the further course of the algorithm.
second neighborhood, the third, and so on. As soon as an

improvement is found, it reverts back to the rst neighborhood®- BB by Little et al.
In [15], a Random Neighborhood Search (RNS) algorithm that The BB algorithm by Little et al. [10] was designed for
randomly picks a different neighborhood in each step as wsblving asymmetric TSPs. In their algorithm, each Febf
as a Multi-Neighborhood Search (MNS) algorithm that scars®lutions is de ned by a corresponding &bf directededges
all neighborhoods of a given solution and collects multiplthat are allowed as part of the tour@ T,i.e.,E = f (i;j):
improving moves at once were tested and found to hayg¢ 2 1:::n”~i6 jg.
produced good performances. In this paper, we apply thesranching is done by choosing an edge which must
three algorithms (i.e., VNS, RNS and MNS) with restartde included in the solutions of one subset and excluded from
exactly as de ned in [15]. those in the other subset. The branching critefiomaps each
2) Solving TSPs with ECEAs are the most well-known EC edge to a natural number. For a given e(ige), ' (i;j ) equals
approaches [23]. They manage a set (population) of soluticiesthe sum of the distances of the shortest allowed edge from
by iteratively selecting its best members and creating new swdei and the shortest allowed edge to ngdén the branch
lutions by mutation and crossover operations. Mutation meastep,’ is evaluated for each edge?2 E and the edge =
to randomly generate a solution out of the neighborhood ¢;1) with the maximal' -value is selected. The current set of
a parent solution. Crossover means to combine two solutioafiowed candidate solutiors is then divided into two subsets,
Several different mutation and crossover operators of EAs for, and T ,. All tours in T; must containe while those in
the TSP have been proposed [24]. In this paper, we investigate must not. When branching t6;, a new edge seE; is
an EA that uses the same four neighborhoods introducedcieated as£; = E nf(i;l) : i 6 kgnf(k;j):j 6 Ig, i.e.,
[15] for mutation. We apply Edge Crossover [6], which trie®y removing all edges either starting in cikyor ending in
to create a new solution by using edges occurring in either @fy I. If branching toT ,, the corresponding set of allowed
its two parents and is considered to have performed well [24)dgesE is created a£, = E nfe g. The subset with the
The Population-based ACO (PACO) [25], another membeest lower bound is investigated rst, while the other subset
of the EC family, is a variant of the ACO algorithm thatenters a queue. Howis designed can be found in [10].
maintains a set (population) &fsolutions. The edges present This process is recursively applied, until it arrives at sets
in those solutions de ne the pheromones. In each iteration, containing only a single solution. If such a solution is better
solutions are generated as in standard ACO and the bestlaint , t is updated. Then, the queue of tour sets awaiting
them replaces the “oldest” solution in the population. PAC@wvestigation is pruned by removing all sets with a lower
is known to be amongst the best ACO approaches [25, 2&und” greater than or equal tb(t ). From the remaining
and was the best tested pure EC method in [15] for the TSRndidates, the one with the smallest corresponding lower
3) Solving TSPs with Hybrid AlgorithmsEC methods bound is extracted and used for the next branching step. We
can be hybridized with LS algorithms for improving theiwill refer to this basic algorithm aBB from here on.
performances: Memetic Algorithms (MAs) [27] are EAs where Given enough runtimeBB will always return the globally
a LS algorithm is applied to every new solution created. MAsptimal (shortest possible) tour. However, in a worst case
are known to have performed well on the TSP [15, 28]. Othecenario, the branches may form a full binary tree with depth
metaheuristics (like PACO) can be hybridized as well. In [15f at leastn. This leads to a worst-case time and memory
it was shown that LS outperforms pure EC methods, brgquirementin(2 ™).

I1l. M ETHODS



Like all common metaheuristics, BB algorithms are anytime IV. EXPERIMENTS AND RESULTS

algorithms [30], i.e., algorithms that can provide an approx- \we conducted experiments on the symmeTi&PLibbench-
imate solution at any point during their course [21]. Theyark cases for the 1BB setups discussed in the previous sec-
quality of the approximation should improve over runtime;on ysing theTSP Suiténtroduced before. In our experiments,
The difference between BB and other EC and LS methodg ryns were performed for each benchmark case. Initial
is that BB can guarantee in nding the optimum solutioRests showed that the memory requirement of the algorithm
eventually (unless terminated earlier). In our study, we th%ickly increases with the problem scale, but seemingly not
do not consider_ on_Iy the end result (in this case, succesSghonentially as it would be the worst case scenario. We
premature termination), but the progress an algorithm makgsyd only obtain results for the 83 smaller problem instances

over runtime. up to 3795 cities and therefore only consider these in the
evaluation (which are still about 100 times more than the
C. New Hybrid BB “largest-scale” original experiment [10]).

The comparison data for the pure LS and EC methods as
In Section 11-B1, we introduced three LS algorithms: VNS par pu

well as their hybri ken from [15], in which detail
RNS, and MNS. The hybrid PACO and the hybrid EA (e o) &5 their hybrids are taken from [15], in which detailed

MA) setups in [15] re ne every constructed candidate solutio particular, we compared the algorithm performanceBB

by applying one of these t_hr_ee. This straightforward ?Che%h the two best setups of pure EA and ACO found in that
can also be used to hybridiZ8B: whenever the algorithm paper. These arEA128+256e, an (128 + 256) EA with

has branched to a s&t containing onlyjTj = 1 solution, this truncation selection and Edge Crossover, @&ACO3,25, a

descriptions of the corresponding experiments can be found.

So'ﬁ“.?n IS pass?d t%.tf?e seltetl:ted ILS ?Igonthr_pr,]whu:lh pirodceL ulation-based ACO with population size 3 and sample
until it arrives at a (different) local optimum. The selecte ize 25. From these two con gurations, the best variants

algorithm is also applied to the initial solution in order tonaving initial populations seeded with solutions obtained from

provide a tight upper bound. We create three hybrid variarE;gnStr ctive heuristics. referred to ®EA128+256e and
of BB by combining it with VNS, RNS, and MNS, which we o x~oa e sl:) jiry oy, are derived

abbreviate a@BVNS ,BBRNS and BBMNJespectively. Finally, we also compare®B with the two best seeded

These hybrids retain the exact propertyB®, but they have ga and ACO setups hybridized with MNS and RNS ac-
a higher worst-case time complexity, since each “leaf” of t'leording to [15]. For the EA, these at®MAL6+64mnse, a
search tree is additionally processed py LS ngﬁeh search (1¢ + 64) EA with Edge Crossover hybridized with MNS,
stephas (at least) quadrat|(2: complexity, leading to a worsk,qnMA2+8rnss ,a(2+8) EA with Savings Crossover [15]

1 1 n

case time complexity of( n®  27). The actual worst-case pypyigized with RNS. For PACO, the best hybrid setups with
complexity could be higher than this lower bound, since th§igerent LS algorithms araPACO3,10mns, with population
LS algorithm would usually perform several more steps. 4,0 3 sample size 10, and MNS, as welh@ACO3,10ms
detailed theoretical analysis of the algorithm's complexity iSnich uses RNS instead. Furthermore. we cc,)mpare’d the
out of the scope of this work. A potential bene t of the LSyerformance of th®B algorithms with the best setups of the
is that it may be able to provide tighter upper boufids ), yre LS algorithmsNMINS RNS1, VNSJ) and their best seeded
which may allow the algorithm to s!<|p more t_)ranches ear“eé_etups MNSmTRNSbmandVNSbm all of which were seeded
and thus reduce the average runtime. In this paper, we &jfih the Double Minimum Spanning Tree heuristic).
to mvestlggte whether th'|§ is true. It is wqrth noting thqt the pitterent benchmark cases have different globally optimal
aforementioned complexities would come into play only if thg, r |engthsf ?. To ease the comparison and understanding of
algorithm is granted enough runtime to complete its seargl s, we considered the algorithm's progress in terms of the
steps. In our experiments, we apply it as an anytime algorith@yative errorF = (f(t ) )= instead of the best discovered
with a limited computational budget. objective valud (t ). If a run reache§ = 0, it has discovered

An alternative way to decrease the (initial) upper bounge global optimumF = 1 means the best currently known
without tangibly affecting the worst-case time complexity igourt is twice as long as the optimal one.

to not obtain it from a random solution but from a solution cre- Similarly, we introduced relative “goal errors”, denoted as

ated by a simple constructive heuristic. We tested this approgeh to compute several statistics: the ERT [16], for instance,
with the Double Minimum Spanning Tree (name prékand  estimates the runtime needed to reach a solution With F,
Savings heuristics (name pre 8) [2]. These heuristics have yhijle the ECDF [16, 17, 19] estimates the probability to which

the time complexity ofO(n?), which is negligible compared 4 run obtains a solution with  F, within a given time
to O(2"). We combine either of these heuristics with any oghyqget.

the previous setups and signify this with the corresponding ]

name pre x, e.g.SBBis BBinitialized with SavingsMBBMNS A. Pure Algorithm Performance

is a MNShybrid of the BB algorithm obtaining its initial Let us rst explore the performance of the puBB al-
upper bound from a solution created by the Double Minimugorithm and compare it with the pure EC algorithms ini-
Spanning Tree heuristic, and so on. All in all, this leads titalized with different heuristics. We found th&B and its

4 3 =12 BB setups. heuristically-initialized derivatives receive the worst ranking,



aggregated from a variety of statistics. The heuristically inB:15. The smallem is, the smaller thé-; value BB can reach
tialized SBB and MBBoutperformBB. within the given computational budget.

We illustrate two ECDFs of these setups in Figure 1. The We also tested two initialized variants BB: MBBandSBR
ECDF of BB in Figure 1a, based on the normalized CPUhitialization does improve the performance BB a little,
runtime measure NT, increases slowly and never reaches &t3east during the early stage of the search, by giving the
for F; = 0:1. In other words, even a 10% margin cannatlgorithm a better initial upper bound and initial. It does
be reached in more than half of the runs under the giveiot, however, increase the speed of improving the existing
computational budget. The ECDF curvesBB, MBBandSBB solutions. The changes of gradients in the performance curves
all increase slowly and approach each other as time increas#sBB, MBB and SBB are almost identical.

If we decreasd~; (not illustrated), the ECDF value decreases From Figure 1, we can clearly see that BB algorithms
rapidly as well. If we measure time in terms of FEs (Figure 1@re initially better thanEA128+256e, but EA128+256e
instead of (normalized) CPU seconds, we see that the tesi@@r outperforms them. The heuristically-initialized EA,
BB algorithms can only create relatively few solutions withimEA128+256€e , is better than thé8B group from the start.
the granted computational budget and thus, the ECDF std@eving on to Figure 2, we can see that pure EC methods
increasing early. behave differently when comparing the improvementFof

These observations are based on all the instances with tdver NT. For instances witB n < 32, the BB algorithms
sizen up to 3795. The ndings are not surprising, as probleroutperform the PACO algorithms all the time and also outper-
scales above 40 were more or less out of reaciBBywhen form EA128+256e most of the time, but are outcompeted by
it was designed. In terms of normalized CPU time (NBB hEA128+256e completely. For instances witB2 n < 64,
can nd solutions of instances with = 32 and below quite the BB algorithms perform the worst. Again, the larger the
well, and the ECDF increases quickly. The ERT in terms afcalen is, the worse the set of test&B methods performs
DEs and NT is low in this problem class. When the probleim comparison with the tested EC methods.
scalen becomes biggeBB nds fewer solutions. The tested LS setupdNSRNS1landVNS2lare much better

The TSP Suiteprovides separate diagrams for the TSkhan theBB algorithms and the pure EC methods.
instances grouped by the number of citiesin other words, i .
we can analyze the relationship between the performancebbf Hybrid Algorithm Performance
BB and the problem scale. In the graphs presented in thisNext, we investigated thBB variants hybridized wittMNS
paper, lines with the same color represent different algorithrfealled BBMN$ VNS (BBVNS, and RNS(BBRNS. Each of
belonging to the same category (e.g., MNS and VNS belotigese three hybrids was tested with and without heuristic
to the LS group and thus they are illustrated with the sanmtialization.
color). The ECDF over all tested benchmark instances has a similar

From Figures 2a and 2b, we see that Bi®algorithm can shape for both DEs and NT, and we plot it féy = 0:01 in
nd the optimal solutions for instances with between 16 and Figure 1b. From the gure, we can visually classify all the
31 quite rapidly, and foB2 n < 63, although not as good ascurves into two main categories. The rst category contains
LS algorithms, it still can nd solutions witlF;  0:05. As the the BB variants, of whichMBBMN®highlighted in the gure)
problem scale increases, however, its performance decreagesforms the best. The other category contains the hybrid EC

While the NT is related to the actual consumed runtimend LS algorithms, of whichPACOS3,10mns (also high-
we can also measure the progress of an algorithm relativelighted) is the best algorithm. The hybrid EC methods perform
the number of candidate solutions it has constructed, i.e.,signi cantly better than the pure EC and hybBd® algorithms.
FEs. In Figures 2c and 2d, we present the ECDF in territiey have achieved better ECDF values eventually and their
of FEs, based on the same groups of small-scale instance€@®F also increases more rapidly. The ECDF value of the
Figures 2a and 2b illustrated. Ti&B algorithm again shows tested hybridBB algorithms fails to reach 0.35 fd¥; = 0:01
good performance fon 31 We can see from Figure 2cwithin the granted computational budget. The ECDF of the
that it can reach the optima with few FEs and outperform theybrid EC and LS algorithms, however, eventually exceeds
other algorithms excepViBB SBB SBBMNSSBBVNSand 0.7. This suggests that there is a huge performance gap
SBBRNS As the instance scale gets larger, B algorithm between the hybridB variants and hybrid EC algorithms or
can only perform a few FEs until the maximum runtime &S algorithms. The hybridBB variants are better than the
exhausted, and it manages to nd only solutions with a longeure EA EA128+256e) but worse than the heuristically-
tour length. initialized EA (hEA128+256e ). They were better than the

In Figure 3, we plot the ERT in terms of the normalizeghure and heuristically initialized variants of PACO for most
runtime NT {/-axis) to achieve given goal errofs (x-axis). of the given time, but are eventually outperformed by them.
The trends for the ERT are similar for DEs, FEs, and NT. The ERT gures in terms of DEs and NT for a givén also
BB and its heuristically-initialized derivatives take longer t@hare similar shapes with those in Figure 3. Here, we observe
nd good solutions compared to the other algorithms. Thigree visually distinguishable algorithm classes: the pure and
becomes, again, even more obvious when we look at largeitialized BB algorithms belong to the worst class, their
instances. For problems with < 256 BB can reachF hybrid versions and pure EC algorithms are in a better class,
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(a) ECDF forF; =0:1 and NT (b) ECDF forF; =0:01 and NT (c) ECDF forF; =0:1 and FEs

Fig. 1: We plot the ECDFs for goal errdf; = 0:1, i.e., the fraction of runs that have discovered a tour that is not more
than 10% longer than the global optimum alRd= 0:01 over the two time measures NT and FE (scalechbyThe x-axes

are logarithmically scaled. In these graphs (in fact all the graphs presented in this paper), lines with the same color denote
algorithm variants within the same category.

1N
Il LL~
|

—— T
e

:
[
|

(a) Progress over NT for all instances with n < 32 (b) Progress over NT for all instances wiB2 n< 64

R\

(c) Progress over FEs/for all instances withlé n< 32 (d) Progress over Fhs/for all instances wittB2 n < 64

Fig. 2: Progress diagrams showing how the relative dfrore., the fraction the best known totr is longer than the optimal
one, improves over runtime. The diagrams are aggregated over smaller-scale subsets of the investigated TSP instances. The
x-axes hold the logarithmically scaled runtimes and ykexes areF-.



use hybridization to generate new solutions. In other words, it
cannot reap as much benet from the LS as the EC methods
do.

If we look at Figure 2a as well as gures on other scales,
we notice that the performance of the compared algorithms
differs most signi cantly when the instance sineis between
32 and 512. Within this range, hybriBB algorithms with
heuristic initialization can nd good solutions with aRy
around 0.05 (0.1 iin is bigger than 256) in an early stage,
although the results are still not better than the heuristically-
initialized EC methods. The entilBB algorithm group fails
to improve its solutions continuously compared to hybrid EC
algorithms and LS algorithms. All in all, for small instance
sizes, all the algorithms have good performance. For medium
size instances, the hybrid EC algorithms and LS offer better
performance. For relatively large problems, however, none of
the tested algorithms performs well.

We found that initialization does not alter the nal results
much, but will it in uence the process of nding the solutions?
Figures 2c and 2d along with the diagrams on different
instance scales provide a positive answer to this question.
To reach some xed goal errof;, for algorithms from
Fig. 3: (log-scaled) ERT in terms of NT ové% for all tested the hybrid BB family and the LS algorithms, the initialized
instances. variants tend to have good starting solutions and take less
FEs. The exceptions arcACO3,25 and hPACO3,25, for
which initialization neither provides any obvious enhancement

(compared to other algorithms) on the starting solutions nor

and the'hybrid EC algorithms as well as the _LS algorithn‘asoes it reduce the consumed FEs signi cantly. The reason
end up in the best category. The hybB® algorithm group o pe that the way PACO creates a solution when its

takes longer to reach a given goal erfey. An interesting heromone matrix is empty (the initial state) is similar to
observation is that the last two classes behave similarly whﬁ&N a constructive heuristic works. In general, when the

F is larger than 0.1, but &, enters the interval between 0.1ingtance sizen increases, the initial solutions generated by

and 0.0S_(representlng better SOIL,’“O”S)' thelr_ perf(?rman%ristic initialization become worse but are still better than
start to diverge. The speed at which the hybBB variants their random counterparts

nd better solutions then declines dramatically. The hybrid EC
algorithms and the LS algorithms also suffer a great declige performance Classes

in the speed of nding better solutions at this stage, but not _
nearly as much as the hybrB group. Based on all the above analyses, we can classify

From Figures 2a and 2b, we see that all the tested algorithfi€ tested algorithms according to their behaviors into
can acquire good results on the smallest instances &ith [0Ur groups, which are, In descending order according
n < 63, although both the EC and LS methods have obtain&y their performance: hybrid EC algorithms, LS algo-
slightly better results within the given computational budgef!thms. the hybridBB, and pureBB. The globally aggre-

A detailed analysis of the gures shows that all the test%ated ranking, over all the performance measures, computed
algorithms are quick to nd long tours, i.e., to reach highe y the TSP Suiteis: hPACO3,10mns, hMA16,64mnse,

g . hPACO3,10rns , MNSm MNS hMA2+8rnss , RNSbm
goal errorsk;. However, the hybrid3B algorithms take much NS1 VNSbrm VNSL hEAL128+256e . MBBMNSSBBRN
longer than the hybrid EC algorithms (or LS algorithms) t L m L €. SS 3
locate good tours. PACO3,25, MBBRNS PACO03,25, MBBVNS SBBMNS

One reason for this observation could be that, although \??EBBIZ’;A%SSSBVNSRBBRNSRBBVNSEA128+2566' SBE

have introduced hybridization in®B the same way in which
it is introduced in EAs and PACO, its “utilization” is very
different. An MA (hybrid EA) uses the results of the LS as
input for the search operations in the next generation andOur experiments have led us to four major conclusions:
ACO uses it to update its pheromone matrix, i.e., the way 1. The traditionalBB algorithm still works well on small-
new solutions are generated. The hybBB only uses it to scale TSP instances (for which it was designed) compared to
update the upper bourfd't ) for the optimum and to update current methods, but it does not perform well on medium or
its variablet holding the best known solution. It does notarger scale instances. This is true for its hybrid variants too.

V. CONCLUSIONS ANDFUTURE WORK



2. Hybridization is able to improve the performanceRB
considerably.

3. We are able to classify TSP solvers into four groups

according to their runtime behavior and con rm that hybrid

algorithms are better than their corresponding pure algorithm§]

4. Heuristically-initialized algorithms normally have good
starting solutions and take less FEs to reach the damand
the hybrid EC algorithms are better than our new hylBHl
algorithms.

Future work will involve implementing the modern variants
of BB by Zhang [20, 21] and hybridizing them with LS. We
will also investigate the use of Lin-Kernighan heuristic [31],

TSP, for benchmarking purposes.
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