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Abstract. The 3-flip neighborhood local search (3FNLS) is an excel-
lent heuristic algorithm for the set covering problem which has domi-
nating performance on the most challenging crew scheduling instances
from Italy railways. We introduce a method to further improve the ef-
fectiveness of 3FNLS by incorporating random flat move to its search
process. Empirical studies show that this can obviously improve the so-
lution qualities of 3FNLS on the benchmark instances. Moreover, it up-
dates two best known solutions within reasonable time.
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1 Introduction

The set covering problem (SCP) is a prominent combinatorial optimization task
which asks to find a collection of subsets to cover all the elements at the min-
imal cost. Formally, it is defined as: Given a universal set E which contains m
elements, n subsets which are S1 ∪ S2 ∪ ...∪ Sn = E and each subset has a cost,
find a set of subsets F at the minimal total cost but still cover all elements in X ,
i.e.,

⋃
s∈F s = E. In literature, the SCP is generally described as integer linear

programming form, as follows:

min
n∑

j=1

cj · xj (1)

subject to

n∑

j=1

aij · xj ≥ 1, i ∈ M, where M = {1, 2, . . . ,m},



xj ∈ {0, 1}, j ∈ N, where N = {1, 2, . . . , n}

The zero-one matrix A = {aij}m×n represents the problem instance, and
aij = 1 means subset Sj is able to cover the element i. For each variable xj = 1
indicates that Sj is selected, and 0 otherwise. In literature, the SCP is also
viewed as to find a set of columns to cover all the rows at the minimal total cost,
where N is the set of all columns that each has a cost, M is the set of rows that
need to be covered.

The SCP is NP-hard in the strong sense [2], thus no complete algorithms
with polynomial time complexity are known for SCP. It has many real-world
applications, such as crew scheduling from bus, railway and airline systems[3–5].
A number of algorithms have been proposed for SCPs, among them the exact
algorithms are shown not suitable to tackle large-scale problems because of their
untolerable time consumption [6]. Therefore, approximation and heuristic algo-
rithms are also widely studied by researchers both from the operations research
and artificial intelligence communities. A variety of approximation or heuristic
algorithms have been proposed, including the greedy algorithm [7], randomized
greedy procedures [8, 9], simulated annealing [10], genetic algorithm [11], ant
colony optimization algorithm [12, 13], artificial bee colony algorithm [14] and
the Meta-RaPS approach by Lan et al. [15].

However, among these heuristics, only a few of them are able to tackle the
very large-scale instances from the Italy railways [4, 16], which contain to up mil-
lions of columns and thousands of rows. These instances, firstly distributed by a
FASTER competition in 1994, are generally referred as the most challenging SCP
instances from the OR-Library [17]. Caprara et al. proposed a Lagrangian-based
heuristic (CFT) and a greedy procedure and obtained very impressive results
on this set of instances and other random generated benchmark instances [16].
They won the first prize of the competition. Later, the 3-flip neighborhood local
search (3FNLS) proposed by Yagiura et al. [18] is able to surpass CFT on these
crew scheduling instances. We emphasize that CFT is essential to the success
of 3FNLS, for 3FNLS also uses the same subgradient method implementation
proposed in CFT to solve the Lagrangian relaxation of SCP.

In this paper, we introduce a search strategy named random flat move to
further improve the effectiveness of 3FNLS. The experimental results show that
it is effective, especially on the very large-scale instances, for it generally produces
better solution qualities than the original 3FNLS within the same time limits.
Further, it discovered two new best known solutions for the largest two instances
within reasonable time.

The rest of this paper is organized as follows: In Section 2, we give descrip-
tion of the 3FNLS algorithm. Then our improvement strategy is described in
Section 3. Section 4 is the computational results and comparisons. Conclusion
and future work are finally presented in Section 5.



2 3FNLS Review

To make this article self-contained, it is necessary to introduce the basic concepts
of 3NFLS before presenting our improvement method. However, because the
ideas in 3FNLS are complicated, we suggest the readers to refer [18] for the
details. In this section, we only provide brief introduction to the key procedures.

The overall procedure of 3FNLS is shown as Algorithm 1, in which the SUB-
GRADIENT method is used to solve the Lagragian dual relaxation of SCP to
obtain a Lagrangian multiplier vector u , and then for each column j a reduced
cost is calculated as cj(u) = cj −

∑
i∈M aij · ui. Because of the integrality prop-

erty, an optimal solution u
∗ to the dual of LP relaxation of SCP is also the

optimal solution to the Lagrangian dual problem [19]. For a good Lagrangian
multiplier vector u , the reduced cost cj(u) can give reliable information for the
goodness of column j, because each column j with xj = 1 in an optimal solution
tends to have small cj(u) value.

From Algorithm 1 we can see that in 3FNLS, initially, the candidate solution
x is obtained greedily, and UB is set to cost(x). 3FNLS calls the subgradient
method many times. At the first time, u0

i = min{cj/Ij |i ∈ Ij} (∀j ∈ N and Ij is
the set of rows j covers), otherwise, u0 is set to u

+, where u+ is the Lagrangian
multiplier vector obtained by the first call. Let x

∗ be the stored best solution
during the search, then UB is always maintained as cost(x∗).

An essential feature of 3FNLS is its problem size reduction heuristic, which
is indispensable when facing the very large-scale instances, because directly local
search on the whole columns is quite expensive. At first, the selected columns are
determined by columns with the first α ·min free· small cj(u), where min free
and α are program parameters which are set to 100 and 3, respectively. This is
corresponding to Line 4 in Algorithm 1.

Whenever some iterations of local search are finished, the selected columns
are adjusted by randomly fixing some ’good columns’ to 1 to call the subgradi-
ment method, and then some new columns with cj(u

′) < 0 are added to the
selected column set, where u ′ is the new Lagrangian multiplier. Let Nselected be
the selected columns which the local search is conducted on, N1 be the set of
columns in x fixed to 1 (not permitted to flip to 0 during the next period of
local search). This is shown as Line 31 in Algorithm 1.

In Algorithm 1, r-flip is possible(r ≤ 3) means that there is at least one r-flip
to decrease a penalty function defined in 3FNLS. At most 3-flip is permitted by
3FNLS and when there are no flips within 3-flip to find to reduce the penalty
function value, the penalty weights of rows are updated. The details of how the
penalty weights are updated is complicated. Usually, the penalty weights are
updated by an increasing manner with the information provided by the last flip.
Only when a certain rule is violated, then the penalty weights of rows will be
decreased to make sure that there are possible flips again. The interested readers
are suggested to refer [18] for details.



Algorithm 1: The 3FNLS algorithm

Input: A SCP instance
Output: Best found solution x

∗

1 Initiate candidate solution x greedily and UB ← cost(x);
2 Initiate u

0, intiate penalty weights for all rows in M ;
3 u

+
← SUBGRADIENT (UB,u0);

4 Select a subset of columns to Nselected based on their reduced cost;
5 trial← 1;
6 while Time not exceeded do

7 while Time not exceeded do

8 if one flip is possible then process one flip;
9 if better solution is detected then

10 update x
∗ and UB ;

11 end

12 continue;
13 ;
14 if two flip is possible then process two flip;
15 if better solution is detected then

16 update x
∗ and UB ;

17 end

18 continue;
19 ;
20 if three flip is possilbe then

21 if better solution is detected then

22 update x
∗ and UB ;

23 end

24 process three flip;
25 continue;

26 else

27 break ;
28 end

29 end

30 update penalty weights of rows;
31 if penalty weigts is updated by decrease then

32 if x
∗ has not been updated for at least mintr lsl iterations then

33 modify variable fixing;
34 end

35 end

36 trial← trial+ 1;

37 end



3 Random Flat Move for 3FNLS

From Algorithm 1, we can see that 3FNLS can be viewed as a multi-start algo-
rithm. Each period of local search starts from fixing some variables in Nselected

to 1 and calling the subgradient method, and then based on the information from
solving Lagrangian relaxation, it continues to flip variables to decrease the pcost
of the candidate solution until the stop condition is reached. Because the N1 is
determined by the stored best solution and current candidate solution, thus the
quality of the stored best solution can directly influence the performance of the
following period of local search.

The problem size reduction heuristic (or variable fixing) divides all the columns
into two parts, in which the Nselected represents the columns selected into the
search. Then, at the beginning of each period of local search, it further reduces
the search size by fixing some columns in Nselected as 1, which means they are
not permitted to be flipped to 0 the following period of local search. It is easy to
see that the correctness of selecting columns to fix to 1 is crucial to the search,
because wrong fixing could drastically mislead the search. As the columns in N1

is also selected heuristically, it is obvious that the correctness of the selection of
columns to fix to 1 can not be guaranteed.

However, we observe that 3FNLS only updates the stored best solution when
another better solution is detected; i.e., only when cost(x ) < UB and x is
feasible. In the variable fixing modification algorithm, the N1 is chosen from
the intersection between the current candidate solution x and the stored best
solution x

∗ which could be a no-promising local optimum. Therefore we propose
a simple search strategy to 3FNLS, which is randomly update the x

∗ when x

becomes feasible and cost(x ) = UB by a probability. The idea of random flat
move is that the stored best solution could be on a local optima plateau, neutral
walking at a probability may lead to a better chance for finding a portal. The
modification of the local search of 3FNLS is as below:

Algorithm 2: Random flat move for 3FNLS
1 if r-flip is possible then

2 if x is feasible then

3 if UB > cost(x) then

4 x
∗

← x ;
5 UB ← cost(x);

6 end

7 if UB = cost(x) and rand(0, 1) > prfm then

8 x
∗

← x ;
9 end

10 end

11 end

In Algorithm 2, r-flip refers to one, two or three flip in Algorithm 1, and prfm
is the probability of the flat move. We set prfm to 0.5 in our implementation.



4 Experimental Results

In order to show the effectiveness of our search strategy to 3FNLS, we test the
modified algorithm on instances from the OR-Library [17], which contains the
randomly generated instances as well as the very large-scale crew scheduling
instances from Italy railways.

4.1 The Benchmark Instances

We test 3FNLS on 4 type random instances and 7 challenging instances from
Italy railways, shown in Table 1. For type NRE to NRH, each type contains 5
instances. The density is the number of non-zero entries in the problem instance
matrix. The optima of these instances are all unknown.

Table 1. Details of the test instances

Instance type m n Range of cost Density(%) Number of instances

NRE 500 5000 1–100 10 5
NRF 500 5000 1–100 20 5
NRG 1000 10000 1–100 2 5
NRH 1000 10000 1–100 5 5

RAIL507 507 63009 1– 2 1.2 1
RAIL516 516 47311 1– 2 1.3 1
RAIL582 582 55515 1– 2 1.2 1
RAIL2536 2536 1081841 1– 2 0.4 1
RAIL2586 2586 920683 1– 2 0.4 1
RAIL4284 4284 1092610 1– 2 0.2 1
RAIL4872 4872 968672 1– 2 0.2 1

For Table 1, we can see that one obvious characteristic of these instances
is that they all have many more columns (n) than rows (m), especially for the
crew scheduling instances from railways, with up to 1 million columns, whereas
no more than 5 thousands rows.

4.2 Comparison Results

The source code of 3FNLS is provide by the author Mutsunori Yagiura, written
in C. Our improvement algorithm with random flat move (3FNLS-rfm) is directly
modified upon the source of 3FNLS. Both the two algorithms are compiled in
g++ with -O2 option, run on the same Intel(R) Xeon(R) E5450 3.00 GHz CPU
machine with 16 GB RAM, under 64-bit Linux system. Due to the randomness
of the algorithms, for each instance, 10 independent runs are performed with
random seeds from 11 to 20. All times are measured in CPU seconds in our
experiments.



The results are reported as the best solutions (best) obtaind from the 10
runs, the average solution of the 10 runs (mean), number of runs that the best
is detected (#best), and the average times over the runs that detecting the
best (Avg Time). The time limit for instances from NRE to NRH is set to 20
seconds, RAIL507, RAIL516 and RAIL582 is set to 200 seconds, and RAIL2536,
RAIL2586, RAIL4284 and RAIL4872 is set to 2000 seconds. The comparison
results are shown in Table 2.

Table 2. Comparison results of 3FNLS and 3FNLS-rfm on benchmark instances

Instance BKS 3FNLS 3FNLS-rfm
best mean #best Avg Time best mean #best Avg Time

NRE1 29 29 29 10 0.24 29 29 10 0.24
NRE2 30 30 30.7 3 6.74 30 30.2 8 12.89
NRE3 27 27 27 10 0.30 30 30 10 0.31
NRE4 28 28 28 10 0.24 28 28 10 0.23
NRE5 28 28 28 10 0.25 28 28 10 0.25
NRF1 14 14 14 10 0.36 14 14 10 0.36
NRF2 15 15 15 10 0.31 15 15 10 0.31
NRF3 14 14 14 10 0.30 14 14 10 0.31
NRF4 14 14 14 10 0.28 14 14 10 0.27
NRF5 13 13 13 10 0.54 13 13 10 0.27
NRG1 176 176 176 10 0.65 176 176 10 0.62
NRG2 154 154 154 10 0.86 154 154 10 1.25
NRG3 166 166 166 10 3.38 166 166 10 5.94
NRG4 168 168 168 10 0.99 168 168 10 1.27
NRG5 168 168 168 10 0.86 168 168 10 1.29
NRH1 63 63 63 10 1.82 63 63 10 2.47
NRH2 63 63 63 10 1.94 63 63 10 2.04
NRH3 59 59 59 10 1.17 59 59 10 0.63
NRH4 58 58 58 10 0.97 58 58 10 0.89
NRH5 55 55 55 10 0.60 55 55 10 0.59

RAIL507 174 174 174 10 26.45 174 174 10 9.70
RAIL516 182 182 182 10 1.67 182 182 10 1.64
RAIL582 211 211 211 10 2.83 211 211 10 2.31
RAIL2536 690a 691 691.3 7 709.83 690 690.2 9 910.80
RAIL2586 945a 946 947.0 2 1269.67 945 946.7 1 1002.79
RAIL4284 1064a 1063 1064.1 3 1350.27 1062* 1063.3 2 1826.34
RAIL4872 1528a 1528 1530.0 2 1214.32 1527* 1529.0 1 910.40

SUM 6136 6137 6143.1 237 4529.61 6133 6138.4 241 4596.41
a The BKSs of RAIL2536, RAIL2586, RAIL4284 and RAIL4872 are all previously found by

3FNLS, reported in [18].
+ The better solution of 3FNLS-rfm is highlighted by boldface.
+ The updated BKS of 3FNLS-rfm is with a following asterisk.

From Table 2, we can see that for instances from NRE to NRH, both 3FNLS
and 3FNLS can achieve the best known solution (BKS) within short times. The
only instance they have not all success is NRE2, where the solution quality of



3FNLS-rfm is still better than 3FNLS. For the NRG type instances, the average
times of 3FNLS are only slightly smaller than that of 3FNLS-rfm.

In Table 2, we highlight the better solutions of 3FNLS-rfm than 3FNLS in
boldface, and the updated best known solutions with a following asterisk. It is
easy to see that 3FNLS-rfm has 4 better best solutions than 3FNLS on the 7
railway instances. Moreover, 3FNLS-rfm also has better solution qualities than
3FNLS on the instance RAIL507, RAIL516 and RAIL582, because its average
times are generally smaller than 3FNLS. For RAIL2536 and RAIL2586, the ori-
gianl 3FNLS fails to achieve the BKS of these two instances within 2000 seconds.
For the RAIL4284 and RAIL4872, 3FNLS-rfm has updated the best known so-
lutions of these two instances. The results in Table 2 show that 3FNLS-rfm
can obviously improve the performance of 3FNLS, especially on the challenging
large-scale railway problems, for it is always achieves better solution qualities,
given the same time limits on the same machine.

5 Conclusion and future work

In this paper, we have reviewed the state-of-the-art 3-flip neighborhood local
search (3FNLS) algorithm for the set covering problem. Through the analysis
of the process of 3FNLS, we notice that it can be regarded as a multi-start
algorithm, which starts each period of local search by solving the Lagrangian
and fixing some variables to 1. However, 3FNLS does not allow the stored best
solution to move on the other ‘equal-best ’solutions which may be portal to
better solutions. Therefore, we propose a random flat move strategy to 3FNLS
to make sure that the stored best solution can be updated by a probability on
the possible plateau.

The proposed strategy has been tested on instances from the OR-Library,
and the computational comparison results show that our strategy can obviously
improve the performance of 3FNLS on the very large-scale instances. Moreover,
it has updated the best known solutions of the last two instances. Observing that
the very large-scale railway instances are commonly regarded as most challenging
in the SCP benchmark instances, we believe our improvement method should be
worth of existing.

In this paper, the probability of our flat move is intuitively set to 0.5, which
may not be the ideal value for this algorithm. In the future, further empirical
studies will be conducted to explain the behaviors of 3FNLS with different flat
move probabilities. The relationship between the effectiveness of 3FNLS and
instance features is also worth for further study.
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