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Abstract—We present an in-depth analysis and implemen-
tation of parallel programming on two NP-hard combinatorial
optimization problems, namely, the Common Due-Date (CDD)
problem and the Unrestricted CDD with Controllable Processing
Times (UCDDCP). The CDD and UCDDCP require scheduling
and sequencing a certain number of jobs with different processing
times on a single machine against a common due-date. The
goal is to minimize the total weighted penalty incurred due to
earliness or tardiness of the jobs and the penalty due to the
compression of the processing times of the jobs. In the UCDDCP,
the processing time of a job can be reduced by letting the
machine work at a faster pace, which, however, comes at a
(compression penalty) cost per time unit. Optimization for both is
carried out by hybrid algorithms, composed of a metaheuristic
that creates good job sequences and an O(n) algorithm which
finds the optimal completion times for the all the jobs in such
sequences created by the metaheuristic algorithms. We investigate
both Simulated Annealing (SA) and a Discrete Particle Swarm
Algorithm (DPSO) for this purpose. Parallel versions of both
algorithms are implemented based on CUDATM. Experiments are
carried out on the benchmark instances provided in the OR-
library and executed on a Nvidia® graphics processing unit. We
find that the parallel SA algorithm performs very well while
obtaining speedups of 100× within a deviation of two percent
compared to the best known solutions. Furthermore, our parallel
algorithms also improve the best known solution values for several
benchmark instances.
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available from IEEE Computer Society (who hold the
copyright) at http://www.ieee.org/. See also
http://dx.doi.org/10.1109/IPDPSW.2016.66.

I. INTRODUCTION

Scheduling and sequencing are decision making processes
to determine the order of the processing of jobs and the time
at which each job should start, on one or more machines. In
other words, they involve allocation of resources over time to
perform a set of tasks. The requirement of scheduling occurs
in everyday situations. Most of these scheduling problems
are NP-hard. Due to the unavailability of exact deterministic
algorithms to solve these problems, they are mostly dealt with
metaheuristic optimization algorithms. The size of the search
space and the complexity of these problems both reduce the
ability of these algorithms to obtain optimal or near optimal
solutions. In the last twenty years, there has been a rapid devel-
opment in the utilization of Graphical Processing Units (GPUs)
for their massive computational capability. Initially GPUs were

designed to compute hardware-assisted bitmap operations to
assist the display and usability of graphical operating systems.
However, they can now be used to perform complex scientific
computations, which has led to the term GPGPU (i.e., General
Purpose Computing on Graphic Processing Units). For a range
of algorithms, the highly parallel structure of GPUs makes
them more effective than CPUs. In the field of combinatorial
optimization, GPUs have been successfully utilized, yielding
several folds of speed-ups and better solutions.

Chakroun et al. propose a branch and bound algorithm
to solve large NP-hard combinatorial optimization problems
on GPUs [1]. They perform experiments on the flow shop
scheduling problem and speed-ups of up to 160 are achieved
compared to the corresponding CPU implementations. Spamp-
inato and Elster propose a revised simplex algorithm for
CPUs and GPUs to solve linear programming problems [2].
This approach uses modern CUDA libraries and the ATLAS
library to solve linear programs with up to 2000 variables.
The GPU version of this approach is about 2.5 times faster.
GPUs have also been successfully used to solve combinatorial
optimization problems with metaheuristic algorithms. Some of
these approaches evaluate the solutions in parallel on the GPU,
while the others outsource some computations to it or perform
the full computation on the GPU. Luong et al. introduce a par-
allel local search algorithm using the GPU [3]. They perform
computational studies on the Traveling Salesman Problem, the
Quadratic Assignment Problem and the Permuted Perceptrons
Problem while showing significant speed-ups in comparison
to serial CPU implementations. In 2010 Luong et al. also
investigate the parallelization of large neighborhood local
search algorithms and experiments on binary problems offer
speed-ups of up to 25 times [4]. Czapiński and Barnes propose
a GPU based parallel tabu search algorithm for the Permutation
Flowshop Scheduling Problem and compute the solutions 89
times faster than the CPU [5]. Ferreiro et al. proposed some
strategies to parallelize Simulated Annealing metaheuristic and
tested them on several benchmark problems [12]. Tsutsui
and Fujimoto implement a parallel evolutionary algorithm to
compute the Quadratic Assignment Problem on a GPU and
obtain the results 12 times faster than the corresponding CPU
implementation [6].

In this research work, we investigate GPU parallelization
using CUDA on two NP-hard scheduling problems, the Com-
mon Due-Date problem (CDD) and the Unrestricted Com-
mon Due-Date problem with Controllable Processing Times
(UCDDCP). For both the problems, any given sequence is
optimized to its minimum weighted penalties by polynomial
algorithms and the best job sequence is obtained with parallel
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versions of Simulated Annealing (SA) and Discrete Particle
Swarm Optimization (DPSO). The realization and development
of these parallel metaheuristics on a GPU using CUDA is been
explained in detail. The presented algorithms are optimized
both in their performance and memory usage by using the
Nvidia CUDA profiler. Later on, we present the results ob-
tained via these parallel approaches for the benchmark problem
instances and compare the quality of the solutions and run-
times between CPU and GPU implementations.

II. PROBLEM FORMULATION

The CDD problem consists of scheduling and sequencing
a fixed number of jobs on a single machine against a common
due date. Each job possesses a processing time along with
the earliness and tardiness penalties, which it incurs if it
is scheduled before or after the due date, respectively. In
the Common Due-Date problem with Controllable Processing
Times (CDDCP), there is an additional compression penalty
associated with all the jobs, which is incurred if the processing
time of the jobs is reduced. Here, the reduction of the process-
ing time of a job essentially means that the job is processed
faster than its usual processing time, by the machine. In doing
so, the machine needs to operate at rather extreme pace,
consuming resources such a fuel. Due to this reason, a penalty
per unit time is associated with each job in case it is processed
faster, in other words, when the processing time is reduced.
This penalty is termed as the compression penalty of the job.
In this paper, we deal with the Unrestricted Common Due-
Date problem with Controllable Processing Times (UCDDCP),
where the due-date is always greater than or equal to the sum
of the processing times of all the jobs. These problems can be
mathematically formulated as below. Let,
n = number of jobs,
Ci = completion time of job i,
Pi = actual processing time for job i, ∀i = 1, 2, . . . , n,
d = common due-date,
Mi = minimum processing time for job i,
Ei = earliness of job i, where Ei = max{0, d− Ci},
Ti = tardiness of job i, where Ti = max{0, Ci − d},
Xi = reduction in the processing time of job i, Xi ≤ Pi−Mi,
αi = earliness penalty per time unit for any job i,
βi = tardiness penalty per time unit for any job i,
γi = compression penalty per time unit for any job i.

In the above formulation, Ci and Xi are the decision
variables of the problem. The objective functions for the CDD
and UCDDCP can then be written as

CDD: min
n
∑

i=1

(αi · Ei + βi · Ti) (1)

UCDDCP: min

n
∑

i=1

(αi · Ei + βi · Ti + γi ·Xi) (2)

III. TWO-LAYERED APPROACH

We now present our overall parallel approach to optimize
the CDD and UCDDCP problems. The idea behind our ap-
proach is to break the integer programming formulation of the
NP-hard problems in two parts, i.e., (i) finding a good (near
optimal) job sequence and (ii) finding the optimal values of
the completion times Ci for all the jobs in this job sequence.

The job sequences are optimized by the GPGPU-parallelized
metaheuristics. For each candidate sequence, they solve the
sub-problem (ii) as linear program by applying specialized
deterministic algorithms. These deterministic algorithms do not
need to be parallelized as they have a polynomial runtime. To
get a clear picture of this strategy, we need to look at the
integer programming formulation for one of these problems.
First, we present the 0-1 integer programming formulation for
the UCDDCP problem:

Minimize
∑n

i=1
(αi · Ei + βi · Ti + γi ·Xi)

subject to,

Ei ≥ d− Ci, i = 1, . . . , n,

Ti ≥ Ci − d, i = 1, . . . , n,

Xi ≤ Pi −Mi, i = 1, . . . , n,

Ci ≥ Pi −Xi + Cj −G · δij , i = 1, . . . , n− 1,

j = i+ 1, . . . , n,

Cj ≥ Pj −Xj + Ci −G · (1− δij), i = 1, . . . , n− 1,

j = i+ 1, . . . , n,

Ci ≥ Pi −Xi, i = 1, . . . , n,

Ei, Ti, Xi ≥ 0, i = 1, . . . , n,

δij ∈ {0, 1}, i = 1, . . . , n− 1,

j = i+ 1, . . . , n.

The variables have the same meaning as explained in Sec-
tion II, except for G and δij . G is some very large positive
number and δij is the decision variable with δij ∈ {0, 1},
i = 1, 2, . . . , n − 1, j = i + 1, . . . , n. We have δij = 1 if job
i precedes job j in the sequence (not necessarily right before
it) and vice-versa. The sole purpose of this binary decision
variable is to find the optimal job sequence. Also notice, that
there are several possible feasible sets of values for δij . Any
such a set of values of deltaij corresponds to a job sequence.
Once it has been generated, the above formulation will become
a linear programming formulation for those deltaij values.
This linear program basically solves for the optimal completion
times and the reduction of the processing times of all the
jobs in that particular job sequence. This linear programming
problem is polynomially solvable. Thus we can utilize the
above strategy to break our NP-hard problems in two parts.
One part deals in finding the completion times (Ci) of the
jobs for any given job sequence. And the second part, utilizes
the GPGPU parallelized metaheuristic algorithms to efficiently
search for the optimal/best job sequence.

IV. ALGORITHM FOR A GIVEN JOB SEQUENCE

LP solvers are quite slow when run iteratively on some
general heuristic algorithm. We therefore developed faster
specialized polynomial algorithms for the specific LPs, to
gain from the above mentioned strategy. Lässig et al. [7] and
Awasthi et al. [8] have recently worked on this strategy and
developed linear algorithms for any given job sequence for
the CDD and UCDDCP, or in other words, specialized linear
algorithms for the resulting linear programming of the fixed δij
values. Due to lack of space, we only present the explanation
of the algorithms and their illustrations, without proving their
correctness. We urge the readers to refer to these research
works for the proof of correctness of these algorithms.



A. Linear Algorithm for CDD job sequence

We now present the main idea for solving the single
machine CDD problem for a given job sequence. The intuition
for the approach is based on two properties presented in [9],
[10] and the theorem provided by Lässig et al. [7] which is
an extension to the property presented by Cheng [11] for the
CDD with symmetric earliness/tardiness penalty. Cheng and
Kahlbacher [9] prove that an optimal solution of a CDD has no
machine idle time between any two jobs. Hall et al. [10] prove
that for every instance of the CDD, there exists an optimal
solution where either the first job starts at time t = 0 or one job
completes at the due date (Ci = d), or both. Besides, Lässig et
al. prove the following theorem regarding the position of the
due-date in the optimal schedule for any job sequence [7].

Theorem 1. If the optimal due-date position in any given job
sequence of the CDD lies between Cr−1 and Cr, i.e., Cr−1 <
d ≤ Cr, then the following relations hold for the two cases
Case 1: If Cr−1 < d < Cr

i)
∑k−1

i=1
αi ≤

∑n

i=k βi, k = 1, 2, 3, . . . , r .

Case 2: If Cr = d

i)
∑n

i=k+1
βi ≤

∑k

i=1
αi, k = r, r + 1, . . . , n and

ii)
∑k−1

i=1
αi ≤

∑n

i=k βi, k = 1, 2, 3, . . . , r .

Theorem 1 states that the difference in the sum of the
tardiness and earliness penalties changes sign before and after
the optimal due-date position, if the optimal solution has the
due-date position at the completion time of a job. Hence, it is
evident that to achieve the optimal solution we must first start
scheduling the jobs from time t = 0. If the sum of the tardiness
penalties is greater than the sum of the earliness penalties then
we know that this initialization is the optimal solution. The
reason is clear from Case 1 of Theorem 1, which basically
states that the sum of the earliness penalties will be less than
or equal to the sum of the tardiness penalties for maximum
value of k. Evidently, the jobs can not be shifted to the left
any further and hence the maximum value of the k will occur
for the initial schedule with the first job starting at time t = 0.
However, if the sum of the tardiness penalties is less than or
equal to the sum of earliness penalties, then we shift all the jobs
towards increasing completion times by placing the due-date
position at the end of the completion times of jobs sequentially
as long as the second property of Theorem 1 Case 2 holds. This
procedure is continued until the sum of the tardiness penalties
remains less than or equal to the sum of the earliness penalties.

1) Illustration of CDD Algorithm: In this Section we
discuss our linear algorithm for CDD problem proposed in [7]
with the help of an illustrative example consisting of n = 5
jobs. The data for our illustrative examples for CDD and
UCDDCP is given in Table I. For the CDD problem, we do not
need parameters Mi and γi. These parameters are later used
to explain the UCDDCP illustration. We optimize the given
sequence of jobs J where Ji = i, i = 1, 2, . . . , 5. There are
five jobs to be processed against a common due-date (d) of 16.
The objective is to minimize Equation (1). We first initialize
the completion times of all the jobs (Ci, i = 1, 2, , . . . , n),

such that Ci =
∑i

k=1
Pk as shown in Figure 1. Hence, we

have Ci = {6, 11, 13, 17, 21}. The first job starts processing at

TABLE I. THE DATA FOR THE EXEMPLARY CASE. THE PARAMETERS

POSSESS THE SAME MEANING AS EXPLAINED IN SECTION II.

i Pi Mi αi βi γi

1 6 5 7 9 5

2 5 5 9 5 4

3 2 2 6 4 3

4 4 3 9 3 2

5 4 3 3 2 1

time t = 0 and the following jobs are processed one after the
other, without any machine idle time. The due-date position
lies in between the completion times of job 3 and 4.

2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

0 d = 16

Fig. 1. Initialization of the schedule with the first job starting at time t = 0
and the remaining jobs following with no machine idle time.

In the next step we compute the vector DTi = Ci − d,
which gives us, DTi = {−10,−5,−3, 1, 5}. Notice that DTi

fetches us the earliness or tardiness values for any job i. A
negative value indicates its earliness, while the positive value
indicates its tardiness. We then calculate the maximum index
τ for DTi ≤ 0 or in other words, maximum index of the job
which is either early or finishes at the due-date. With τ 6= 0,
we calculate the sum of the earliness penalties (pe) and the
tardiness penalties (pl) of the jobs. Hence, initially pe = 22
and pl = 5. In the next step we shift all the jobs by DTτ to
check if the property (ii) of Case 2 in Theorem 1 holds. After
a right shift of 3 units, we have DTi = {−7,−2, 0, 4, 8} and
the 3rd job finishes at the due date, as shown in Figure 2.

2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

0 d = 16

Fig. 2. Schedule with the completion time of job 3 lying at the due-date,
after the right shift of all the jobs by 3 units.

Since this schedule still satisfies pl < pe, we again shift the
jobs to the right, this time by the processing time of job 3. This
also means that the 3rd job will now be tardy implying that the
sum of the earliness penalty (pe) will reduce by ατ = 6 and
the sum of the tardiness penalties will increase by βτ = 4.
Hence, we have pe = 16 and pl = 9. Figure 3 shows the
schedule after the second right shift of the jobs, with job 2
finishing at the due-date. This process of sequential right shift
is continued as long as the pl < pe. The final schedule obtained
is shown in Figure 3, as for any further shift property (ii) of
Case 2 in Theorem 1 does not hold. Finally, we calculate the
earliness and tardiness of each job and multiply them with their
corresponding penalty. The optimal solution found for this job
sequence is thus 81.

B. Linear Algorithm for UCDDCP job sequence

We now present and illustrate the O(n) algorithm, to
optimize a job sequence of UCDDCP, given by [8]. Since
we deal with the unrestricted case, we take the due date
d ≥

∑n

i=1
Pi. The minimum processing time of a job is the



2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

0 d = 16

Fig. 3. Schedule with the completion time of job 2 lying at the due-date,
after an additional right shift of all the jobs by 2 units.

time it takes to complete, if processed fast. The compression
penalty is the penalty per unit time associated with each job
when the processing time of the job is reduced.

Before explaining the algorithm, we present two properties
for the UCDDCP problem, proved by Awasthi et al. [8].

Property 1. If the due-date position in the optimal schedule
of unrestricted case of the CDD lies at the completion time
of some job r, then its position remains unchanged for the
controllable case of the unrestricted CDD problem.

Property 2. If controlling the processing times fetches a better
solution, then the compression of the processing times should
be to their minimum value.

The idea of the algorithm for the UCDDCP is to first
optimize the sequence for the CDD problem and then compress
the jobs towards the due date. Figure 4 shows the optimal
schedule for the CDD problem with the second job completing
at the due date. As Property 1 suggests, the position of the due
date will remain unchanged for the UCDDCP problem. This
in turn means that if the compression of the jobs yield a better
solution, they necessarily have to be compressed towards the
due date (indicated by the arrows in Figure 4).

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 4 4

0 d = 22

Fig. 4. Optimal CDD schedule with arrows indicating possible compression
of the jobs towards the due-date.

Property 2 shows that compression of the jobs should be
to their minimum value, if it fetches an improvement. Hence it
gets clear that if required, the processing time of the jobs has
to be reduced to their minimum possible value, indicated by
Mi in Table I. Ultimately, we only need to determine which
jobs should be reduced in terms of the processing times. To
determine that, we start from the last job of the sequence.

1) Illustration of UCDDCP Algorithm: We take due date
as d = 22 (≥

∑n

i=1
Pi) and first consider job 5 which is tardy.

The compression penalty of this job is 1, while the tardiness
penalty is 2. Hence, a reduction of the processing time from
P5 = 4 to M5 = 3 will increase the compression penalty by
X5 ·γ5 (where, X5 = P5−M5) but reduce the tardiness penalty
by X5 · β5 (as the job is compressed towards the due date).
Since β5 > γ5, reducing the processing time of job 5 fetches
us an overall improvement in the penalty by X5 ·(β5−γ5) = 1.
The schedule after this compression is shown in Figure 5.

In the next step, we move to the second last job, job 4 in
this case. Job 4 is reducible by 1 time unit. Since there should
not be any machine idle time in between jobs, observe that
reducing job 4 towards the due date will reduce the tardiness
of job 4 as well as job 5. Hence, a reduction will offer an

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 4 3

0 d = 22

Fig. 5. Schedule with the reduction of job 5 to its minimum value of 3 time
units.

improvement by X4 · (β4+β5−γ4). Since, β4+β5−γ4 = 3,
reduction of job 4 gives us a further improvement of 3 cost
units, as shown in Figure 6.

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 3 3

0 d = 22

Fig. 6. Schedule with the reduction of job 4 to its minimum value of 3 time
units.

This procedure is iterated over all the jobs. The procedure
for all the tardy jobs remains the same as just explained. The
jobs which are early or the one which finishes at the due
date have to be dealt with in the opposite manner. A job is
reduced if the compression penalty is less than the sum of the
earliness penalties of all its preceding jobs. In our case, any
further reduction will not improve the solution any further than
Figure 6 with the optimal penalty cost of 77 for the considered
job sequence.

V. PARALLEL APPROACH

There are several strategies to parallelize SA which are
described by Ferreiro et al. [12]. The first strategy is an
application dependent parallelization, where the operands of
the objective function are divided into multiple processors.
This approach is not applicable here since the operands of our
objective functions occur sequentially, i.e., each operand needs
to wait for its preceding operand to complete. The second
strategy is a domain decomposition, where the search space is
divided into several parts and each processor searches for the
best solution on its own sub-domain while sharing its results to
other processors. The drawback of this strategy is the enormous
size of the search space itself, and it becomes ineffective for a
job size of 50 or more. Another approach uses multiple Markov
chains to parallelize SA. This strategy executes multiple
Markov chains asynchronously. After a certain period or at the
end of the process, the processors communicate their results to
each other. Depending on the number of communications, this
strategy is classified by Ferreiro et al. [12] into Asynchronous
and Synchronous simulated annealing.

A. Asynchronous Simulated Annealing

The asynchronous SA basically executes a large number of
independent SA algorithms simultaneously i.e., each processor
performs separate SA asynchronously. When all algorithm
instances are finished, a reduce operation is used to select
the best result among all the processors. The initial config-
uration for the algorithm can be the same or different for
all chains [12]. Figure 7 shows the asynchronous approach
where ω processors execute SA simultaneously. Each chain
uses t iterations, where each iteration reduces the temperature
T0 exponentially by the factor µ, where 0 < µ < 1. At the
end a reduction operation is used to select the best solution.
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Fig. 7. Schematic representation of the asynchronous approach of parallel
simulated annealing algorithm as suggested by Ferreiro et al. [12].

B. Synchronous Simulated Annealing

The synchronous version of SA starts in each processor
with a random initial state si, where i = 0, 1 . . . ω − 1, and ω
is the number of processors. In the next step, a Markov chain
of a constant length M is simulated on each processor at a
constant temperature. When all the processors have finished,
they offer their final states sij , where i = 0, 1 . . . , ω − 1,
and j = 1, 2, . . . , t. Again, a reduction operation is performed
over the best solution of all the processors to obtain smin

j at
the end of the Markov chain iterations. For the next iteration of
the Markov chain, smin

j (which is the state with minimal cost
for the objective function after the jth iteration) is selected as
the initial state on all the processors at the next temperature
level. Ferreiro et al. [12] claim that the exchange of the states
and results can be very intensive in terms of the runtime.
Figure 8 shows the synchronous approach with ω processors
for t iterations of SA at each temperature level.
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Fig. 8. Schematic representation of the synchronous approach of parallel
simulated annealing algorithm as suggested by Ferreiro et al. [12].

VI. GPU BASED SIMULATED ANNEALING

We now explain our parallel implementation of the Asyn-
chronous Simulated Annealing algorithm [12]. The reason for
choosing the asynchronous version over the synchronous SA is
due to the premature convergence of the latter approach, exam-
ined from our experimental analysis. SA implemented on each
CUDA thread involves the standard metropolis acceptance
criterion and the exponential cooling schedule, as shown in
Algorithm 1. The initial temperature T0 is taken as the standard
deviation of fitness values of 5000 different job sequences,
generated randomly. This value for the initial temperature has
been suggested by [13]. The exponential cooling rate of 0.88
has been adopted in this work, which is inferred from our
experiments over a range of cooling rates. The neighborhood of
any individual (i.e. job sequence) is generated by a perturbation
mechanism, with a perturbation size of Pert . After every 10
SA iterations, Pert number of jobs are selected at random
from the current sequence and shuffled using the Fisher Yates
algorithm, provided in [14].

Algorithm 1: The core Simulated Annealing algorithm
running in each CUDA thread.

1 s← s0
2 T ← T0

3 E ← Fitness(s)
4 while (i ≤ #Iterations) do

5 snew ← Neighbour(s)
6 Enew ← Fitness(snew )
7 if exp((E − Enew)/T ) ≥ rand (0, 1) then

8 s← snew

9 E ← Enew

10 T ← T · µ
11 i← i+ 1

12 Return s

Host

Initial Population,

SA Parameters,

Problem Data

Final Solution

DEVICE

Copy to Global Memory

Run Asynchronous SA

Copy Result to Main Memory

Fig. 9. Schematic representation of data transfer between the host and device.
The data is transferred two times, back-and-forth, while the SA iterations are
performed by the device.

The parallelization of the SA is initiated by allocating the
number of threads and blocks on the GPU. CUDA offers
three dimensional grids and blocks in (x, y, z) directions. The
grid configuration G can be written as (gx, gy, gz) and the
block configuration B as (bx, by, bz). The grid configuration
G implies that there are gx, gy and gz number of blocks in x,
y and z directions, respectively. Likewise, B configuration for
the blocks implies bx, by , bz threads in the three dimensions.
Let N be the total ensemble size and NB be the block size,
then a grid size of ⌈N/NB⌉ is allocated in the device for
the parallel runs of the algorithms. In our work, we consider
linear configurations for both the grid and the blocks, with
G = (⌈N/NB⌉, 1, 1) and B = (NB , 1, 1), to avoid race-
conditions. Henceforth, the initial job sequences are copied
to the GPU global memory, along with the earliness, tardiness
penalties and the processing times of the jobs. The due date
d and the number of jobs n are transferred to the constant
memory of the device to benefit from its broadcast mechanism.
For the UCDDCP, the minimum processing times and the
compression penalties are also copied to the GPU. Figure 9
shows the data transfer mechanism from the host to device
and vice-versa. We then launch four different kernels, one after
the other to calculate the i) fitness function, ii) perturbation,
iii) SA acceptance, and iv) the best solution. Figure 10 shows
these kernels in CUDA standard double braket notation. The
CUDA threads are depicted as T1, T2, etc, implying that each
thread is running the same algorithm in parallel.

A. Fitness Function Kernel

The fitness kernel first copies the earliness and tardiness
cost per unit of time, inside the shared memory of a block,
because this memory has shorter latency than global memory.
This is one reason, why we consider linear configuration for
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Fig. 10. Flow chart of the parallel Asynchronous Simulated Annealing

the grid G and block size B, in a single dimension only.
Otherwise there would be many threads writing to the same
address in shared memory which can in turn invoke the race-
conditions. After writing to the shared memory, the kernel
synchronizes the current block. This must be done because
the warps within the block can be at different positions of the
program depending on their scheduling. This synchronization
ensures that all the write operations on the shared memory are
finished before reading them. Otherwise, a thread would have
the chance to read from an address where no thread has written.
The processing times of the jobs are not cached because there
are only a few reads from it inside the fitness function. Next,
the fitness value for the job sequence in each thread uses the
linear algorithms illustrated in Section IV, provided by [7]
and [8] for CDD and UCDDCP, respectively.

B. Perturbation Kernel

The neighborhood of any job sequence is calculated by
applying the Fisher Yates algorithm to a part of the parent job
sequence. A sub-sequence of size Pert = 4 is selected from
the parent job sequence and then the Fisher Yates algorithm is
implemented on this sub-sequence while retaining the position
of other jobs in the sequence. The random numbers required
for the acceptance criterion are generated using the cuRand
library of CUDA. Since cuRand provides only integer values,
a normalization is carried out to obtain a floating point value
in [0, 1]. After creating a new permutation for each thread, the
fitness kernel is launched again to evaluate the solution for
each newly created job sequence.

C. Acceptance Kernel

Henceforth, the acceptance kernel is launched, which sim-
ply checks if the given solution should be accepted or not,
depending on the standard metropolis acceptance criterion of
the SA algorithm. The random numbers in this kernel are again
created using the cuRand library.

D. Reduction Kernel

The last kernel which is launched is the reduction kernel to
find the minimum value among all the threads. The minimal
value among all the threads is calculated by performing an
atomic minimization function. The atomic function performs
its operations inside the L2-Cache, which provides a good
performance although the full process results in a sequential
execution order. After invoking all these kernels, there should
be a synchronization of the device, because all kernel calls are
asynchronous and inside a queue. Hence, the synchronization
operation is performed by the CPU. Through this operation,
the CPU waits until the GPU finishes processing. At the end
of the number of iterations, the global best solution is copied
back to the host.

We now present a short explanation and the implementation
of the core discrete particle swarm optimization algorithm. The
parallel implementation of the DPSO algorithm on the GPU is
carried out in the asynchronous manner, as explained for the
SA. In the forthcoming section, we then present and compare
our results for our GPGPU utilized parallelization of both SA
and DPSO with the CPU implementations.

VII. DISCRETE PARTICLE SWARM OPTIMIZATION

(DPSO)

Due to the lack of space and to avoid redundancy, we only
explain the DPSO algorithm. Apart from the core aspect of
the algorithm, the parallelization approach remains the same
as for SA. Algorithm 2 provides the pseudo code for the DPSO
implemented in this work, based on Pan et al. [15].

Algorithm 2: The core Discrete Particle Swarm Opti-
mization Algorithm implemented.

1 Initialize Population
2 Evaluate fitness-function
3 while (i ≤ #Iterations) do

4 find particles’ best
5 find swarms best
6 Update particles’ position
7 Evaluate fitness-function
8 i← i+ 1

9 Return Best Particle

Since, the traditional Particle Swarm Optimization [16] is
designed to work on real valued positions, we use DPSO
for our scheduling problems. Pan et al. have previously used
DPSO on the no-wait flow shop problem [15]. DPSO contains
an adjusted method to update the particles position, based
on discrete job permutations. The updated method includes
particles’ position (pi(t)), its best position (pbi (t)) and the
swarms best position (g(t)) [15]. The new position pi(t + 1)
of the particle is given by

pi(t+1) = c2⊕F3

(

c1⊕F2

(

w⊕F1 (pi(t)),p
b
i (t)

)

,g(t)
)

. (3)

In the above equation, operator ⊕ in any clause x′ = c⊕
f(x) means, operate function f on x with a probability of c, i.e.
x′ = f(x), if rand(0, 1) < c and x′ = x, if rand(0, 1) > c.
The first component of the update mechanism in Equation (3)
is the particles velocity given by λi(t + 1) = w ⊕ F1(pi(t)),
where F1 represents a swap operator which selects two dif-
ferent jobs in the sequence (pi(t)) randomly and swaps their



position in the job sequence, with a probability of w. The
second component is given by δi(t+1) = c1⊕F2(λi(t), p

b
i (t))

and represents the particles cognition part, where F2 is a
one-point crossover operator with a probability of c1. The
last component is the particles social part, representing the
orientation on the swarm behaviour. The third component
results in the new position of a particle and can be defined
as Xi(t + 1) = c2 ⊕ F3(δi(t), g(t)), where F3 is a two point
crossover.

VIII. RESULTS

In this section, we present our results for the SA and
DPSO parallelization on the GPU for the CDD and UCD-
DCP problems. We compare the two algorithms for both the
problems and present the results for the benchmark instances.
The benchmark instances for the CDD problem have been
obtained from the OR-library [17] and Awasthi et al. provide
the problem instances for UCDDCP in [8]. The runtime of
the presented GPU based metaheuristics is influenced by
the number of generations and the number of GPU threads
which perform the linear algorithms for the job sequence.
Figure 11 shows the influence of both the parameters for
parallel Asynchronous SA on the UCDDCP problem. It is
evident that increasing the number of generations or threads
increases the runtime considerably. However, to achieve a good
solution quality in a relatively short time, one needs to keep
a balance between these two parameters and avoid invoking
several serial processing of the blocks by running a very
large number of iterations. Increasing the number of threads
(population size) also increases the runtime of the algorithm,
since a SM is limited to the number of threads per block it can
operate on, simultaneously. This implies that loading several
threads within a block results in serial processing of the blocks
through the SM. On the other hand, increasing the block size
offers less registers which a thread can use.
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Fig. 11. Runtime in seconds for the parallel fitness function evaluations of
the UCDDCP problem, with respect to the number of threads (population size)
and the number of generations.

The theoretical limit for the number threads in one block
of the Kepler device we use is 1024. However, after several
experimental evaluations we observe that the best results for
both the problems are achieved with a block size of 192.
Selecting the number of grids and the number of iterations,
is a rather complex task and is usually problem dependent,
due to the above mentioned trade-off between the number of
iterations and the number of threads. Having a high value for

these parameters decrease the speed but on the other hand
it fetches better results. Hence, after testing our approach on
several experimental values, we choose to present our results
for the two best configurations, which result in best speed-ups
compared to the results provided by [7] and [8]. In both the
cases, the grid size is kept at a constant value of four. This is
not a high value considering the GPU device we use, but the
results obtained are of excellent quality with a high speed-up,
in comparison to the CPU runtimes. Hence, the total number of
threads, which is also the population size is equal to 768, with
4 blocks each with 192 threads. We test SA and DPSO both for
1000 and 5000 iterations. The cooling factor for the Simulated
Annealing is kept at 0.88 with an exponential cooling schedule
and the perturbation size was taken as four, for all the problem
instances. The implementation of the parallel algorithm was
carried out on a GeForce GT 560M device, with 2 GB graphics
card memory on a host CPU of 32 GB RAM with Intel-
Xeon 2.4 GHz processor. Before presenting the results, we first
explain some parameters used in the analysis of our results.

SA1000 = SA algorithm with 1000 iterations,

SA5000 = SA algorithm with 5000 iterations,

DPSO1000 = DPSO algorithm with 1000 iterations,

DPSO5000 = DPSO algorithm with 5000 iterations,

Z = Solution obtained with our parallel approach

for any benchmark instance,

Zbest = Solution obtained with the CPU version

algorithms by [7] and [8],

%∆ = Percentage Deviation of the GPU results with

that of CPU, where %∆ =
(Z − Zbest)

Zbest

· 100.

A. Results for the CDD

We now present our results for the Common Due Date
problem obtained with our parallel approaches. Table II
presents the average percentage deviation (%∆) for the CDD
problem relative to the sequential implementation in Lässig et
al. [7]. The percentage deviation shown in the table is the
average over 40 different instances for each job size. The
graphical representation of these percentage deviations is
shown in Figure 12 as a bar chart.

TABLE II. AVERAGE PERCENTAGE DEVIATION OF OUR APPROACHES

FOR EACH PROBLEM SIZE FOR CDD, RELATIVE TO LÄSSIG et al. [7].

Jobs SA1000 SA5000 DPSO1000 DPSO5000

10 0.159 0 0 0

20 0.793 0.392 0.141 0.033

50 0.442 0.243 0.652 0.146

100 0.386 0.307 2.048 0.463

200 0.437 0.388 4.854 1.148

500 0.734 0.354 15.562 3.807

1000 1.904 0.401 32.376 9.342

As can be seen from the table and the bar chart, SA
performs extremely well keeping the percentage deviation for
SA within two percent, while the quality of the results obtained
by DPSO deteriorates as the number of jobs increase. The
figure also shows, that for smaller instances up to 50 jobs,
the DPSO version performs only marginally better than SA,
in terms of the solution quality. The exact %∆ values for the



bar chart can be found in Table II. The maximum %∆ values
for SA1000 and SA5000 are 1.9 and 0.4 percent, respectively.
However, the percentage deviation for DPSO increases several
folds, reaching the values of 32 and 9 percent, respectively, for
1000 and 5000 iterations. DPSO computes better values than
SA only till job size of 50, but for higher instances it does not
converge to better solutions than SA.
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Fig. 12. Comparative average percentage deviation of our four parallel
algorithms relative to the best known solutions of [7] for the CDD problem.

Among all the four approaches, SA5000 performs the best
and fetches us a superior solution quality with average percent-
age deviation of less than 0.5 percent, for any instance. More-
over, comparing the runtimes of the CPU implementations by
Lässig et al. [7] and Biskup and Feldmann [18], we observe
that the speed-ups obtained by our parallel algorithms certainly
prove their worth, as shown in Table III and Figure 13.
Although the speed-up values for small instances are not so
significant, the solutions for higher instance sizes of 50, 100,
200, 500 and 1000 are encouraging. Table III depicts the
speed-ups of our four approaches with previous two CPU
implementations by [7] and [18]. For SA1000, our speed-up
values in comparison to [18] are 227, 264, 619, 1137, 1971 and
3214 for problem sizes of 20 to 1000, respectively. We would
like to mention here that the speed-ups calculated in this work
are the ratio of the time required for the corresponding CPU
implementation to the total runtime of our parallel algorithms
incorporating all the memory transfers between the host and
the device. Considering the fact that our solution quality is
well within 2 percent of the best known solutions, these
values of speed-ups show the effectiveness of GPU computing.
The speed-ups with the very recent work of [7] are 40, 47,
94 and 111, for problem sizes of 100 to 1000, respectively.
Considering the level of percentage deviation and the speed-
ups obtained, we reckon that DPSO does not perform as
efficient as the Simulated Annealing. Figure 14 shows the
runtime plot of the SA and the DPSO algorithm with 1000 and
5000 generations for the CDD, along with the CPU rum-time
of [7]. As can be seen the runtime for SA1000 is better for each
given input size. SA5000 usually takes 5 times as much runtime
as SA1000. For an input size of 1000 jobs the SA5000 algorithm
runs for about 17.26 seconds whereas the CPU version takes
379.36 seconds, offering a speed-up of 21, with an average
percentage gap of just 0.4 percent. The table also shows that

TABLE III. OBTAINED SPEED-UPS OF THE PARALLEL ALGORITHMS

FOR THE CDD PROBLEM RELATIVE TO [7] AND [18].

Jobs
SA1000 SA5000 DPSO1000 DPSO5000

[7] [18] [7] [18] [7] [18] [7] [18]

10 1.9 4.7 0.5 1.3 1.2 2.9 0.5 1.2

20 3.8 227.6 1.1 65.4 1.9 113.8 0.6 36.7

50 11.8 264.5 2.9 65.1 4.8 107.7 1.2 28.0

100 40.6 619.3 9.2 141.7 12.7 195.1 3.0 46.6

200 47.7 1137.1 10.4 248.7 14.2 338.7 3.1 75.6

500 94.7 1971.4 19.7 410.2 23.6 492.2 5.4 113.5

1000 111.2 3214.8 21.9 635.1 24.6 711.8 5.6 164.2
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Fig. 13. Graphical representation of the obtained speed-ups of the parallel
algorithms for the CDD problem relative to [7].

increasing the number of generations by a factor of five also
increases the runtime by a factor about five, as expected. The
runtime plot also shows that the DPSO algorithm is slower than
SA, with number of iterations. Since we have the same CUDA
thread counts and the number of iterations, it is evident from
Table II and Figure 12 that Simulated Annealing outperforms
the Discrete Particle Swarm Optimization algorithm.
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Fig. 14. Plot of the runtimes of the four parallel approaches and the CPU
implementation of Lässig et al. [7] for the CDD problem.



B. Results for the UCDDCP

We now present our results for the Unrestricted Common
Due-Date Problem with Controllable Processing Times (UCD-
DCP) using the parallel SA and DPSO with 1000 and 5000
generations, each. Figure 15 shows the relative percentage
deviation of the GPU results in comparison to the CPU
based algorithm for the UCDDCP by Awasthi et al. [8]. The
negative values mean that the results obtained by these parallel
algorithms are better than the best known solution provided
by [8]. The exact percentage deviations for all the jobs can
be found in Table IV. As in the case for CDD, we again
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Fig. 15. Comparative average percentage deviation of our four parallel
algorithms relative to the best known solutions of [8] for the UCDDCP
problem.

TABLE IV. AVERAGE PERCENTAGE DEVIATION OF OUR APPROACHES

FOR EACH PROBLEM SIZE FOR UCDDCP, RELATIVE TO AWASTHI et al. [8].

Jobs SA1000 SA5000 DPSO1000 DPSO5000

10 0 0 0 0

20 1.233 0.151 -0.094 -0.083

50 0.105 -0.142 0.005 -0.382

100 0.131 -0.191 1.705 0.048

200 0.356 -0.136 5.472 1.153

500 1.465 -0.777 17.514 3.544

1000 6.801 0.265 36.015 10.928

observe that DPSO computes worse results from job size 100
and above, compared to SA. Table IV show that both versions
of DPSO obtain better results than SA for input sizes of 20
and 50 jobs. For 1000 jobs the deviation for DPSO1000 is
36 percent, while that of SA1000 is less than 7 percent. The
DPSO5000 performs better than DPSO1000, but for 500 and
1000 jobs its deviation relative to SA is quite high. Simulated
Annealing again achieves better results for higher instances
of 100 jobs and above. Figure 15 shows that SA with 5000
generations perform much better than with 1000 generations
with 25 times better solution value for 1000 jobs. Table IV
shows that SA with 5000 generations obtains better results
than the best known solution, for all the problem instances,
except for 1000 jobs, where %∆ is still just 0.26. Figure 16
shows the average runtime of the presented algorithms, each
for 1000 and 5000 generations and their comparison with [8].
SA version with 1000 generations requires only 0.67 seconds
for 50 jobs which is about 3.7 times faster than the CPU
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Fig. 16. Plot of the runtimes of the four parallel approaches and the CPU
implementation of Lässig et al. [7] for the UCDDCP problem.

TABLE V. OBTAINED SPEED-UPS OF THE PARALLEL ALGORITHMS

FOR THE UCDDCP PROBLEM RELATIVE TO AWASTHI et al. [8].

Jobs SA1000 SA5000 DPSO1000 DPSO5000

10 0.459 0.119 0.436 0.189

20 1.225 0.289 1.043 0.327

50 3.701 0.841 2.480 0.642

100 9.226 2.012 5.229 1.247

200 23.600 5.039 11.866 2.662

500 43.060 8.981 18.494 4.138

1000 47.383 9.721 18.38 4.167

version. For 100 jobs the speed-up is about 9 times and for
an input size of 1000 jobs the speed-up is about 47.4 times
faster with an average deviation of 6.8 percent. With the 5000
generation version of SA, the quality of the results is much
better, but the time needed is a bit more, however still much
faster than the CPU. The speed-ups for this case are obtained
only for input sizes 100 and more, as is clear from Table V.
The values of speed-ups are about 2, 11, 18 and 19 percent
for 100 jobs and above, respectively. Our experimental results
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Fig. 17. Graphical representation of the obtained speed-ups of the parallel
algorithms for the UCDDCP problem relative to [8].



certainly conclude that GPU parallelization is very powerful
and efficient. Another observation which cannot be overlooked
is that GPU technology has proven to be worthwhile only
for large instances as shown in [4] and [1]. However, we
show that with an efficient strategy for data transfer and
algorithm parameters, high level of speed-ups are also possible
for small instances. Concluding, our results and comparisons
show that the best solutions can be achieved with SA and 5000
generations. To improve the values for 20 and 50 jobs, DPSO
can be used but for larger problem instances DPSO does not
work well with the given parameters. Reason for this could
be that SA is an intensification oriented metaheuristic which
searches intensively on a promising part of the domain, where
as the DPSO is a diversification oriented metaheuristic which
works more scattered [19].

IX. CONCLUSION

This work presents an efficient parallelization of the Sim-
ulated Annealing algorithm for the Common Due Date (CDD)
problem and the Unrestricted CDD with Controllable Pro-
cessing Times. We utilize the 2-layered approach to break
up the NP-hard problem in two components to parallelize
the metaheuristic algorithms. Henceforth, two strategies for
parallelizing the SA algorithm are explained, based on Fer-
reiro et al. [12]. Later on in the paper, we focus on ex-
haustively explaining our parallel SA algorithm and its exact
implementation. The NP-hard problems which are covered in
this work are the CDD and the UCDDCP. We effectively
use the polynomial algorithms provided in recent works of
Lässig et al. [7] and Awasthi et al. [8], to optimize the
given sequences for both these problems and to develop the
parallel metaheuristic algorithms. Section VI describes how
the SA metaheuristic algorithm is mapped on to the CUDA
programming model. Finally, we present the evaluations of our
parallel strategies for the two NP-hard scheduling problems.
The algorithms are implemented over the benchmark instances
provided in the OR-library [17] and by Awasthi et al. [8].
The efficiency of our parallel Simulated Annealing algorithm
is proven by the comparison of our results with the previous
CPU implementations, as well as the parallel DPSO algorithm
on the same GPU architecture.

Not only do we obtain high speed-ups, our parallel algo-
rithms also provide improvements to the best known solution
values for several benchmark instances. It is evident from our
implementation that parallel DPSO does not perform as well as
the parallel SA, at least for the studied problems. The speed-
ups obtained with SA are massive compared to the very recent
work of [7] and [8]. The speed-up values obtained are of
the order of 100 and 50, even for a relatively small problem
instance of 1000 jobs. DPSO is not just slow compared to the
SA but it is also not able to find solutions of high quality,
compared to the parallel SA. Future works in this area should
also examine the utilization of the texture memory of the
GPU to make use of its spatial cache. Another observation
is that the development of GPU based algorithms is simplified
fundamentally with CUDA in comparison to solutions in the
past where data had to be mapped as images to be processed
by a GPU. In conclusion, it can be said with high confidence
that it is worth to invest more effort in investigating the
GPU parallelization for NP-hard combinatorial optimization
problems.
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